МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет
(факультет / институт / филиал)
УТВЕРЖДЕНО
решением Ученого совета ННГУ
протокол № 13 от 30.11.2022 г.
Рабочая программа дисциплины
Решение задач по колебаниям и волнам и оптике
(наименование дисциплины (модуля))
Уровень высшего образования
Бакалавриат
Направление подготовки / специальность
03.03.02 - Физика
Направленность образовательной программы
Медицинская физика

Нижний Новгород – 2023

Форма обучения

ОЧНАЯ (очная / очно-заочная / заочная)

1. Место дисциплины в структуре ООП

Дисциплина «Решение задач по колебаниям и волнам и оптике» относится к базовой части является обязательным для освоения, преподается на 2 году обучения, в 4 семестре.

Цели освоения модуля. главной целью дисциплины «Решение задач по колебаниям и волнам и оптике» является создание устойчивых навыков применения законов теории колебаний и волн, расчет оптических схем. Для усвоения данного курса необходимо знание основных физических законов и явлений в объеме школьного курса физики и дисциплин «Механика», «Термодинамика и молекулярная физика», «Электричество и магнетизм».

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции	Планируемые результаты обучения по
	дисциплине (модулю), характеризующие этапы
	формирования компетенций
УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	(ОПК-1) Знать фундаментальные понятия, законы и модели теории колебаний и волн. (ОПК-1) Уметь применять законы и модели теории колебаний и волн для решения профессиональных задач. (ОПК-1) Владеть навыками решения задач, основываясь на знаниях, полученных в ходе освоения дисциплины.
ПК-2: Способен применять профессиональные знания и умения, полученные при освоении профильных дисциплин, в научно-исследовательской деятельности, при реализации научно-исследовательских, научно-иновационных и практических проектов	(ПК-2) Знать основные физические явления и законы (ПК-2) Уметь применять полученные знания для решения профессиональных задач (ПК-2) Владеть основами классической физики и использовать их при проведении теоретических и экспериментальных физических исследований

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная
Общая трудоемкость, з.е.	2
Часов по учебному плану	72
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	
- занятия семинарского типа (практические занятия / лабораторные работы)	32
- КСР	2
самостоятельная работа	39
Промежуточная аттестация	зачет

Содержание дисциплины «Решение задач по колебаниям и волнам и оптике»

Наименование и краткое		В том числе				
содержание разделов и тем дисциплины, форма промежуточной аттестации	(PE)	Контактная работа (работа во взаимодействии с преподавателем), часы из них				работа
по дисциплине	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная работа обучающегося, часы
Свободные колебания систем с одной	4	_	2	_	2	2
степенью свободы.			_		_	_
Вынужденные колебания.	4	_	2	_	2	2
Понятие о нелинейных колебаниях.	4	_	2	_	2	2
Колебательные системы с двумя степенями свободы.	5	_	2	_	2	3
Электромагнитные колебания	6	_	3	_	3	3
Волны. Уравнение бегущей волны	5	_	2	_	2	3
Волны в упругих средах	6	_	3	_	3	3
Электромагнитные волны	6	_	3	_	3	3
Интерференция волн	5	_	2	_	2	3
Дифракция волн	5	_	2	_	2	3
Дисперсия света	5	_	2	_	2	3
Поляризация света	6	_	3	_	3	3
Оптика анизотропных сред	5	_	2	_	2	3
Классические модели излучения света	5	_	2	_	2	3
В т.ч. текущий контроль						
Промежуточная аттестация – зачет						

Содержание разделов дисциплины «Решение задач по колебаниям и волнам и оптике»

- 1. <u>Свободные колебания систем с одной степенью свободы</u>. Гармонические колебания. Сложение гармонических колебаний. Фигуры Лиссажу. Биения. Затухающие колебания. Время затухания. Логарифмический декремент затухания.
- 2. <u>Вынужденные колебания</u>. Процесс установления колебаний. Резонанс. Параметрическое возбуждение колебаний. Автоколебания.
- 3. <u>Колебательные системы с двумя степенями свободы</u>. Нормальные колебания (моды) и нормальные частоты.
- 4. Электромагнитные колебания. Квазистационарные поля. Критерии квазистационарности. Переходные процессы в LC и RC цепях. Колебательный контур. Собственные колебания в контуре. Уравнение гармонических колебаний. Энергия колебательного контура. Колебательный контур с затуханием. Время затухания. Логарифмический декремент затухания. Добротность контура. Вынужденные колебания в колебательном контуре. Резонансные кривые колебательного контура. Ширина резонансной кривой и ее связь с добротностью контура. Установление вынужденных колебаний. Связанные контура. Парциальные частоты. Нормальные колебания (моды) и их частоты.
- 5. <u>Переменный синусоидальный ток</u>. Квазистационарные токи. Методы комплексных амплитуд и векторных диаграмм. Активное, емкостное и индуктивное сопротивления.

- Закон Ома для цепей переменного тока. Законы Кирхгофа для цепей переменного тока. Эффективные значения токов и напряжений. Трансформатор. Коэффициент трансформации. Роль сердечника. Высокочастотные токи. Скин-эффект. Толщина Скинслоя.
- 6. <u>Волны. Уравнение бегущей волны</u>. Длина волны, период колебаний, фаза и скорость волны. Бегущие волны. Продольные и поперечные волны. Уравнение бегущей волны.
- 7. Волны в упругих средах. Волны смещений, скоростей, деформаций и напряжений. Волновое уравнение. Волны в струне. Упругие волны в стержне. Волны в газах и жидкостях. Выражения для скоростей волн через параметры среды. Отражение и преломление волн. Основные случаи граничных условий. Интерференция волн. Стоячие волны. Поток энергии в бегущей волне. Вектор Умова. Элементы акустики. Интенсивность и тембр звука. Ультразвук. Движение со сверхзвуковой скоростью. Ударные волны. Эффект Доплера.
- 8. <u>Электромагнитные волны</u>. Волновое уравнение для электромагнитных волн в вакууме. Скорость распространения электромагнитных волн. Поперечность электромагнитных волн. Вектор Умова-Пойнтинга. Закон сохранения энергии электромагнитного поля. Вибратор Герца. Излучение электромагнитных волн. Давление света. Опыты Лебедева.
- 9. <u>Дисперсия света</u>. Микроскопическая картина распространения света в веществе. Линейный оптический осциллятор. Классическая электронная теория дисперсии. Зависимость показателей преломления и поглощения от частоты. Фазовая и групповая скорости, их соотношения (формулы Релея). Нормальная и аномальная дисперсии показателей преломления. Дисперсионное расплывание волновых пакетов. Поглощение света. Закон Бугера-Ламберта-Бэра. Особенности распространения света в металлах. Критическая частота. Отражение света поверхностью металла.
- 10. <u>Поляризация света</u>. Линейно-, циркулярно-, эллиптически-поляризованный свет. Математическое описание состояния поляризации. Поляризация естественного света. Оптические явления на границе раздела изотропных диэлектриков. Формулы Френеля. Поляризация отраженной и преломленной волн. Угол Брюстера. Явление полного внутреннего отражения света и его применение.
- 11. Интерференция волн. Интерференция монохроматических волн. Интерференция квазимонохроматических волн. Функция видности для световых волн. Основные интерференционные схемы. Интерференционные схемы: делением волнового фронта (схема Юнга), делением амплитуды (бипризма Френеля, полосы равной толщины и равного наклона). Интерферометр Майкельсона. Когерентность световых волн. Временная когерентность. Время и длина когерентности. Понятие о Фурьеспектроскопии. Пространственная когерентность. Интерферометр Юнга.
- 12 <u>Дифракция волн</u>. Принцип Гюйгенса-Френеля. Скалярная теория Кирхгофа. Применение векторных диаграмм для анализа дифракционных картин. Дифракция на круглом отверстии и экране. Зоны Френеля. Зонные пластинки. Дифракция на краю полубесконечного экрана. Спираль Карню. Ближняя и дальняя зоны дифракции. Дифракционная длина. Дифракция в дальней зоне (Фраунгофера). Угловой спектр. Связь ширины углового спектра с размерами отверстия. Дифракция Фраунгофера на щели, на прямоугольном отверстии, на круглом отверстии. Амплитудные и фазовые дифракционные решетки.
- 13. Оптика анизотропных сред. Распространение световых волн в анизотропных средах: Экспериментальные факты и элементы теории. Уравнение волновых нормалей Френеля. Фазовая и лучевая скорости. Одноосные и двухосные кристаллы. Двойное лучепреломление света. Качественный анализ распространения света с помощью построения Гюйгенса. Интерференция поляризованных волн. Поляризационные приборы, четвертьволновые и полуволновые пластинки. Получение и анализ эллиптически поляризованного света.
- 14. Классические модели излучения света. Классическая модель затухающего дипольного

осциллятора. Оценка времени затухания. Лоренцева форма и ширина линии излучения. Естественная ширина линии излучения. Излучение ансамбля статистически независимых осцилляторов. Тепловое излучение. Излучательная и поглощательная способность вещества. Модель абсолютно черного тела. Закон Стефана-Больцмана, формула смещения Вин. Формула Рэлея-Джинса. Ограниченность классической теории излучения. Элементы квантовой теории излучения. Формула Планка.

4. Образовательные технологии

- 1) методика «вопросы и ответы»;
- 2) выполнение практического задания у доски;
- 3) индивидуальная работа над практическим заданием;
- 4) работа в парах над практическим заданием;
- 5) работа в малых группах над практическим заданием;

5. Учебно-методическое обеспечение самостоятельной работы студентов.

Самостоятельная работа студентов предусматривает выполнение домашних заданий, решение задач, изучение рекомендованной литературы и подготовку к зачету. Оценочные средства для контроля текущей успеваемости включают в себя устный опрос на практических занятиях, активность в обсуждении качественных вопросов. Для контроля промежуточной аттестации по итогам освоения дисциплины «Решение задач по колебаниям и волнам и оптике» используются вопросы задачи по нижеприведенным темам.

Вопросы для контроля.

- 1. Виды колебательных процессов и систем.
- 2. Общее уравнение линейных колебательных систем с одной степенью свободы. Примеры. параметры, характеризующие линейные колебательные системы с одной степенью свободы, уравнение движения, закон движения.
- 3. Свободные незатухающие гармонические колебания линейного осциллятора с одной степенью свободы: уравнение движения, закон движения, амплитуда, фаза, начальная фаза, частота, роль начальных условий. Примеры.
- 4. Энергетические соотношения при свободных незатухающих гармонических колебаниях линейного осциллятора с одной степенью свободы. Вывод уравнения движения из закона сохранения энергии. Примеры.
- 5. Свободные колебания линейного осциллятора с одной степенью свободы: уравнение движения, закон движения, амплитуда, фаза, начальная фаза, собственная частота, коэффициент затухания, роль начальных условий. Примеры.
- 6. Характеристики затухающих колебаний: коэффициент затухания, логарифмический декремент затухания, добротность. Определения и физический смысл.
- 7. Фазовая плоскость, фазовая траектория. Способы представления гармонических колебаний: метод векторных диаграмм, метод комплексных амплитуд. Физический смысл мнимой частоты.
- 8. Вынужденные колебания под действием гармонической силы. Общее решение неоднородного уравнения. Амплитуда и фаза вынужденных колебаний.
- 9. Резонансная кривая. Понятия резонанса, резонансной частоты, полуширины резонансной кривой. Два правила построения резонансных кривых для медленных колебаний. Фазовая кривая.
- 10. Переходные процессы: решение уравнения вынужденных колебаний под действием гармонической силы с учетом переходных процессов, время установления. Влияние добротности системы на процессы установления.
- 11. Принцип радиосвязи. Временной подход к анализу сигнала.
- 12. Вынужденные колебания под действием негармонической силы. Спектральный подход к анализу сигнала: принцип спектрального анализа, ряд Фурье, коэффициент передачи, спектральные диаграммы.

- 13. Ширина спектральной кривой. Критерий оптимального приема на языке спектров.
- 14. Колебательные системы с двумя степенями свободы. Примеры. Понятия степени свободы, парциальных систем, нормальных колебаний. Общий вид дифференциальных уравнений, описывающих колебания системы с двумя степенями свободы. Метод решения.
- 15. Решение дифференциальных уравнений, описывающих колебания системы с двумя степенями свободы на примере двух колебательных контуров с индуктивной связью. Роль начальных условий. Коэффициент распределения.
- 16. Квазистационарные токи. Идеальное сопротивление, идеальная емкость, идеальная индуктивность. Законы Ома и Кирхгофа для мгновенных значений токов и напряжений. Пример применения законов для расчета электрических схем.
- 17. Импеданс. Комплексный импеданс. Активное и реактивное сопротивления.
- 18. Двухполюсники. Импедансы основных двухполюсников.
- 19. Законы Ома и Кирхгофа для гармонических токов и напряжений. Мгновенные токи и напряжения при последовательном и параллельном соединении двухполюсников. Пример применения законов для расчета цепей переменного тока.
- 20. Законы Ома и Кирхгофа для гармонических токов и напряжений. Комплексный импеданс последовательного и параллельного соединения двухполюсников. Пример применения законов для расчета цепей переменного тока.
- 21. Расчет последовательного колебательного контура. Резонансные кривые колебательного контура.
- 22. Четырехполюсники. Комплексный коэффициент передачи. АЧХ, ФЧХ. Применения четырехполюсников. Примеры схем.
- 23. Последовательный колебательный контур как четырехполюсник. АЧХ, ФЧХ.
- 24. Фазовращатели. Интегрирующая и дифференцирующая цепочки.
- 25. Работа в цепи переменного тока. Понятие мгновенной мощности. Физический смысл. Мгновенная мощность в цепи гармонического тока.
- 26. Понятие средней мощности. Физический смысл. Средняя мощность в цепи гармонического тока. Средняя мощность, выделяющаяся на основных двухполюсниках. Активные и реактивные элементы. Проблема соѕф.
- 27. Эффективный ток и эффективное напряжение. Физический смысл. Выражения для эффективного тока и эффективного напряжения в случае гармонических токов и напряжений.
- 28. Выражение для средней мощности в комплексной форме. Активная, реактивная и полная мощности. Физический смысл.
- 29. Мгновенные и средние значения энергий электрического поля конденсатора в цепи гармонического тока. Мгновенные и средние значения энергий магнитного поля катушки в цепи гармонического тока.
- 30. Волна. Уравнение волны. Волновой вектор, волновое число. Фазовая скорость волны.
- 31. Фронт волны. Волновой вектор. Плоские. цилиндрические, сферические волны.
- 32. Скалярные и векторные волны. Поляризация волн.
- 33. Эффект Доплера для акустических волн.
- 34. Волновое уравнение.
- 35. Стоячие волны. Энергия стоячих волн. Узлы и пучности.
- 36. Волновое уравнение продольных волн в тонком стержне. Волновое сопротивление. Фазовая скорость упругой волны.
- 37. Объемная плотность энергии упругой волны в тонком стержне.
- 38. Поток энергии упругой волны. Вектор Умова. Интенсивность волны.
- 39. Волновое уравнение упругой волны в газе (акустические волны). Волновое сопротивление акустической волны. Фазовая скорость акустической волны.
- 40. Скорость звука в воздухе (приближения изотермической и адиабатической атмосферы).

- 41. Энергия акустических волн.
- 42. Волновое уравнение поперечных упругих волн в струне.
- 43. Отражение и преломление упругих волн на границе двух сред. Граничные условия. Коэффициенты отражения и прохождения.
- 44. Решение волнового уравнения продольных волн в тонком стержне. Нормальные (собственные) колебания упругих сред.
- 45. Решение волнового уравнения поперечных упругих волн в струне. Граничные условия. Обертоны.
- 46. Дисперсия. Групповая скорость волн. Формула Рэлея.
- 47. Волновое уравнение для свободных электромагнитных волн.
- 48. Решение волнового уравнения для свободных электромагнитных волн. Уравнение электромагнитной волны. Волновое сопротивление электромагнитной волны, фазовая скорость, показатель преломления.
- 49. Поляризация электромагнитных волн. Плоскость поляризации электромагнитной волны. Закон Малюса. Степень поляризации электромагнитных волн.
- 50. Энергия электромагнитных волн. Вектор Пойнтинга. Теорема Пойнтинга.
- 51. Шкала электромагнитных волн.
- 52. Отражение и преломление электромагнитных волн. Граничные условия для волновых векторов и амплитуд. Амплитудные коэффициенты отражения и прохождения. Интегральные коэффициенты отражения и прохождения.
- 53. Явление Брюстера. Угол Брюстера.
- 54. Полное внутреннее отражение.
- 55. Интерференция скалярных волн. Интерференционный член. Интерференция плоских и сферических волн.
- 56. Интерференция электромагнитных волн. Интерференционная схема Юнга. Интерференционная картина на большом расстоянии. Энергия интерференции. Координаты максимумов. Число полос интерференции. Видность.
- 57. Методы наблюдения интерференционных картин: полосы равного наклона. Влияние немонохроматичности света на интерференционную картину.
- 58. Методы наблюдения интерференционных картин: полосы равной толщины. Влияние немонохроматичности света на интерференционную картину.
- 59. Методы наблюдения интерференционных картин: Кольца Ньютона. Влияние немонохроматичности света на интерференционную картину.
- 60. Методы наблюдения интерференционных картин: Зеркало Ллойда. Влияние немонохроматичности света на интерференционную картину.
- 61. Методы наблюдения интерференционных картин: бипризма Френеля. Влияние немонохроматичности света на интерференционную картину.
- 62. Методы наблюдения интерференционных картин: бизеркала Френеля. Влияние немонохроматичности света на интерференционную картину.
- 63. Методы наблюдения интерференционных картин: билинза Бийе. Влияние немонохроматичности света на интерференционную картину.
- 64. Когерентность. Необходимые условия интерференции.
- 65. Интерференция немонохроматических волн. Временная когерентность Время и длина временной когерентности.
- 66. Интерференция от протяженного источника. Пространственная когерентность Длина пространственной когерентности.
- 67. Связь параметров пространственной и временной когерентности со спектральными характеристиками.
- 68. Дифракция. Принцип Гюйгенса-Френеля.
- 69. Дифракция Френеля. Зоны Френеля. Дифракция Френеля на круглом отверстии. Зависимость интенсивности центрального максимума от расстояния до точки наблюдения. Спираль Френеля. Пятно Пуассона.

- 70. Дифракция Френеля на щели. Зоны Шустера. Спираль Корню.
- 71. Границы применимости дифракционных формул Френеля. Длина Рэлея.
- 72. Дифракция Фраунгофера. Дифракция Фраунгофера на щели. Выражение для интенсивности дифракционной картины на экране.
- 73. Дифракционная решетка. Параметр решетки. Выражение для интенсивности дифракционной картины на экране. Щелевой и решеточный множители. Центральный максимум, главные максимумы, побочные максимумы. Координаты максимумов.
- 74. Дифракционная решетка как спектральный прибор. Условие разрешения дифракционной картины от немонохроматического источника.
- 75. Эйконал. Уравнение Эйконала.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине

- 6.1 Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования
 - УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (ОПК-1) Знать фундаментальные понятия, законы и модели теории колебаний и волн.
 - (ОПК-1) Уметь применять законы и модели теории колебаний и волн для решения профессиональных задач.
 - (ОПК-1) Владеть навыками решения задач, основываясь на знаниях, полученных в ходе освоения дисциплины.
 - ПК-2: Способен применять профессиональные знания и умения, полученные при освоении профильных дисциплин, в научно-исследовательской деятельности, при реализации научно-исследовательских, научно-инновационных и практических проектов (ПК-2) Знать основные физические явления и законы
- (ПК-2) Уметь применять полученные знания для решения профессиональных задач (ПК-2) Владеть основами классической физики и использовать их при проведении теоретических и экспериментальных физических исследований

Описание шкал оценивания

Критерии оценок зачета:

зачтено — успешное выполнение практических заданий, выданных преподавателем, владение программным материалом, понимание сущности рассматриваемых процессов и явлений, умение самостоятельно обозначить точки активного роста нового знания.

не зачтено — невыполнение практических заданий, выданных преподавателем, полное непонимание смысла проблем, не достаточно полное владение терминологией, неумение самостоятельно обозначить проблемные ситуации.

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции. (В приложении)

Методические материалы, определяющие процедуры оценивания. (В приложении)

7. Учебно-методическое и информационное обеспечение дисциплины «Решение задач по колебаниям и волнам и оптике» а) основная литература:

 3. 4. 	Ландсберг Г. С Оптика: [для физ. специальностей вузов] М.: Наука, 1976 926 с. http://www.lib.unn.ru/php/details.php?DocId=81332&DB=1 Матвеев А.Н. Оптика. М.: Высшая школа, 1985. http://www.lib.unn.ru/php/details.php?DocId=342145&DB=1 Сивухин Д.В. Общий курс физики. Т.4. Оптика. М.: Наука, 1980. http://www.lib.unn.ru/php/details.php?DocId=66967&DB=1 Физический практикум. Электричество и оптика. Под ред. Ивероновой В.И. М.: Наука, 1968. http://eqworld.ipmnet.ru/ru/library/books/Iveronova1968ru.djvu Фаддеев М. А Элементарная обработка результатов эксперимента: учеб. пособие Н. Новгород: Изд-во Нижегор. гос. ун-та, 2004 120 с. http://www.lib.unn.ru/php/details.php?DocId=467611&DB=1							
	о) дополнительная литература.							
	Борн М., Вольф Э. Основы оптики. М. Наука, 1973. http://eqworld.ipmnet.ru/ru/library/books/BornVolf1973ru.djvu Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1965- 1967. Том 3. Излучение. Волны. Кванты. http://eqworld.ipmnet.ru/ru/library/books/FejnmanLejtonSends_t3_1965ru.djvu							
	программное обеспечение и Интернет-ресурсы: p://phys.unn.ru/library.asp?contenttype=Library							
7. Материально-техническое обеспечение дисциплины «Решение задач по колебаниям и волнам и оптике» помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для хранения и профилактического обслуживания оборудования и помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду ННГУ								
-	Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 Физика.							
Авторы: доценты кафедры КРЭФ Зайцева Е.В., Каткова М.Р., Марычев М.О. Заведующий кафедрой <u>Е.В. Чупрунов</u>								
Ра	цензент							
	и. декана по учебной работе О.В. Белова							
Пр НН	Программа одобрена на заседании Учебно-методической комиссии физического факультета ННГУ от «» 2022 года, протокол № б/н							
Уч	едседатель ебно-методической комиссии зического факультета ННГУ/ Перов А.А. /							

Приложение 1

ОПК-1: Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности

в сфере своей профессиональной деятельности							
Планируемые		Крите	рии оценивания ре	зультатов обучения			
результаты обучения*(показатели достижения заданного уровня освоения компетенций)	1	2	3	4	5		
знать фундаментальные понятия, законы и модели классической физики.	Отсутствие знаний	Фрагментарное знание фундаментальны х понятий, законов и моделей классической физики.	В целом успешное знание фундаментальных понятий, законов и моделей классической физики	содержащее отдельные пробелы знание фундаментальных понятий, законов и	Успешное и систематическое знание фундаментальных понятий, законов и моделей классической физики		
УМЕТЬ: применять законы классической физики для анализа процессов, происходящих в различных физических процессах.	Отсутствие умений	Частично освоенное умение применять законы классической физики для анализа процессов, происходящих в различных физических процессах.	В целом успешное, но не систематически осуществляемое умение применять законы классической физики для анализа процессов, происходящих в различных физических процессах	В целом успешное, но содержащее отдельные пробелы умение применять законы классической физики для анализа процессов, происходящих в различных физических процессах	Сформированное умение применять законы классической физики для анализа процессов, происходящих в различных физических процессах		
владеть: навыками решения задач, основываясь на знаниях, полученных в ходе освоения модуля.	Отсутствие навыков	Фрагментарное применение навыков решения задач, основываясь на знаниях, полученных в ходе освоения модуля.	В целом успешное, но не систематическое применение навыков решения задач, основываясь на знаниях, полученных в ходе освоения модуля	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач, основываясь на знаниях, полученных в ходе освоения модуля	Успешное и систематическое применение навыков решения задач, основываясь на знаниях, полученных в ходе освоения модуля		