МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_ «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДІ
решением президиума Ученого совета Н
протокол № 1 от 16.01.20
Рабочая программа дисциплины
Современная компьютерная графика
Уровень высшего образования
Магистратура
Направление подготовки / специальность
02.04.02 - Фундаментальная информатика и информационные технологии
Направленность образовательной программы
Искусственный интеллект
Форма обучения
очная

г. Нижний Новгород

2024 год начала подготовки

1. Место дисциплины в структуре ОПОП

Дисциплина Б1.О.07 Современная компьютерная графика относится к обязательной части образовательной программы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции	Планируемые результат (модулю), в соответ	ты обучения по дисциплине гствии с индикатором	Наименование оценочного средства		
(код, содержание компетенции)	достижения компетенци Индикатор достижения	и Результаты обучения	Для текущего	Для	
	- 11		Для текущего контроля успеваемости Отчет по лабораторным работам Собеседование Тест	Для промежуточной аттестации Зачёт: Контрольные вопросы	
	коммуникации коммуникации	использованием современных интеллектуальных технологий, для решения профессиональных задач			

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная
Общая трудоемкость, з.е.	4
Часов по учебному плану	144
в том числе	

аудиторные занятия (контактная работа):	
- занятия лекционного типа	32
- занятия семинарского типа (практические занятия / лабораторные работы)	16
- КСР	1
самостоятельная работа	95
Промежуточная аттестация	0
	Зачёт

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Наименование разделов и тем дисциплины	Всего		в том ч	исле	
	(часы)	Контактн взаимодейс			
		Занятия лекционного типа	Занятия семинарского типа (практические занятия/лабора торные работы), часы	Bcero	Самостоятельная работа обучающегося, часы
	о ф о	о ф о	о ф о	о ф о	о ф о
Введение. Компьютерная графика в системе современной науки и технологий. Современные открытые библиотеки и системы.	18	4	2	6	12
Научная и инженерная визуализация. Алгоритмы объемной визуализации (VR)	18	4	2	6	12
Алгоритмы стерео-визуализации	13	3	1	4	9
Архитектура современных графических процессоров (GPU) для графики и вычислений. Вычисления общего назначения на GPU.	16	4	2	6	10
Сегментация 3D данных. Реконструкция поверхностей. Сеточные методы моделирования поверхностей и тел	16	4	2	6	10
Реконструкция поверхностей. Метод Marching Cubes. Структуризация и параметризация его результата. Сеточные методы моделирования поверхностей и тел. Edge Based и Face Based структуры 18 4 2 6 16 3 хранения сеточных данных. Упрощение сеток. Сплайны и методы подразбиения кривых и поверхностей	15	2	3	5	10
Методы и алгоритмы моделирования глобального освещения.	16	4	2	6	10
Трассировка лучей в реальном времени. Оптимизация вычислений в визуализации глобального освещения 3D сцен	17	4	1	5	12
Методы анимации сцен и персонажей	14	3	1	4	10
Аттестация	0				
КСР	1			1	
Итого	144	32	16	49	95

Содержание разделов и тем дисциплины

1. Введение. Компьютерная графика в системе современной науки и технологий. Современные открытые библиотеки и системы.

- 2. Научная и инженерная визуализация. Алгоритмы объемной визуализации (VR).
- 3. Алгоритмы стерео-визуализации
- 4. Архитектура современных графических процессоров (GPU) для графики и вычислений. Вычисления общего назначения на GPU.
- 5. Сегментация 3D данных. Реконструкция поверхностей. Сеточные методы моделирования поверхностей и тел.
- 6. Реконструкция поверхностей. Метод Marching Cubes. Структуризация и параметризация его результата. Сеточные методы моделирования поверхностей и тел. Edge Based и Face Based структуры 18 4 2 6 16 3 хранения сеточных данных. Упрощение сеток. Сплайны и методы подразбиения кривых и поверхностей.
- 7. Методы и алгоритмы моделирования глобального освещения.
- 8. Трассировка лучей в реальном времени. Оптимизация вычислений в визуализации глобального освещения 3D сцен.
- 9. Методы анимации сцен и персонажей.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает в себя подготовку к контрольным вопросам и заданиям для текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведенным в п. 5.

Для обеспечения самостоятельной работы обучающихся используются:

- электронный курс "Турлапов В.Е. «Компьютерная графика ДО»" (https://e-learning.unn.ru/course/view.php?id=804).

Иные учебно-методические материалы: Для обеспечения самостоятельной работы обучающихся используется открытый электронный онлайн-курс (Инженерная и компьютерная графика, https://online.edu.ru/public/course?faces-redirect=true&cid=3803), созданный в системе открытых онлайн-курсов российских вузов https://online.edu.ru/.

- 5. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю)
- 5.1 Типовые задания, необходимые для оценки результатов обучения при проведении текущего контроля успеваемости с указанием критериев их оценивания:
- 5.1.1 Типовые задания (оценочное средство Отчет по лабораторным работам) для оценки сформированности компетенции ОПК-2:

Раздел 1. Скалярные поля. Реконструкция. Задачи обработки 2D-3D данных томограммы

Исходные данные: 3D (2D) массив исследуемых величин short, integer или float. Заданы размеры воксельной сетки Nx, Ny, Nz и шаг h по x,y,z.

MPT томограммы можно взять в zip-файле !!_MRI-CANSER-bin.zip в материалах курса (https://www.sites.google.com/site/turlapovveunn/advanced-computer-graphics-course): 3 bin-файла и текстовое описание bin-формата. Во всех трех файлах в качестве исходных даны срезы в разных плоскостях: BRANIX-02 вид спереди - 99 слоев; CEREBRIX-01 вид сбоку - 175 слоев; CEREBRIX-02 вид сверху - 244 слоя. Выбор томограммы на Ваше усмотрение.

Комментарий по реализации простой цветной трансфер-функции (ТF):

Для реализации простой цветной трансфер-функции (TF), соответствующей наблюдаемому диапазону (окну) плотностей [a,b], цвета Color(a), Color(b) устанавливаются через стандартный диалог выбора цвета. Число цветов 2 и более. Для каждого цвета задается непрозрачность Alpha(a), Alpha(b),..., в диапазоне [0,1], по умолчанию равная 1. Для получения цвета, находящегося между каждой парой (например, Red-Yellow) соседних цветов, используется линейная интерполяция.

Критерии оценивания (оценочное средство - Отчет по лабораторным работам)

Оценка	Критерии оценивания
превосходно	Все практические задания (лабораторные работы) выполнены в полном объеме и в срок, при этом применен творческий поход к решению нестандартных задач. Описаны все этапы выполнения заданий, код и результаты работы представлены преподавателю.
отлично	Все практические задания (лабораторные работы) выполнены в полном объеме и в срок. Описаны все этапы выполнения заданий, код и результаты работы представлены преподавателю.
очень хорошо	Выполнены основные этапы решения задачи или задача решена с незначительными недочетами. Код и результаты работы представлены преподавателю в срок.
хорошо	Выполнены часть этапов решения задачи или задача решена с недочетами. Код и результаты работы представлены преподавателю в срок.
удовлетворительно	Выполнены часть этапов решения задачи или задача решена с существенными недочетами. Код и результаты работы представлены преподавателю, но с отклонениями от сроков.
неудовлетворительно	Выполнены не все практические задания (лабораторные работы) или выполнены не в полном объеме (представлено не полное описание этапов выполнения заданий, код работает некорректно, результаты работы не представлены преподавателю).
плохо	Студент не приступал к выполнению практических заданий.

5.1.2 Типовые задания (оценочное средство - Собеседование) для оценки сформированности компетенции ОПК-2:

- 1. Компьютерная графика в системе современной науки и технологий.
- а. Компьютерная графика в информационных системах. Классификация разделов компьютерной графики в широком смысле.

- b. Соотношение курсов Компьютерная графика и Современная компьютерная графика.
- с. Современные открытые библиотеки и системы: VTK, ITK, ParaView, CGAL, Open CASCADE, SALOME
- 2. Научная и инженерная визуализация. Алгоритмы объемной визуализации.
- а. Метод Raycasting и прямая визуализация объема (Direct Volume Randering). Достоинства лучевых методов. Процедура интерполяции и классификации при выборке из экспериментальных 3D данных, содержание и проблемы. Transfer Function.
- b. Математическая модель трассировки луча: интеграл объемного рендеринга и процедура численного интегрирования вдоль луча в модели с постклассификацией.
- с. Случайный сдвиг (jittering) стартовых позиций луча и метод количественной оценки качества визуализации. Рекомендованные частоты выборки
- d. Предынтегрированная визуализация и виртуальные выборки.
- е. Оптимизационные стратегии.
- f. Способы накопления цвета вдоль луча
- 3. Алгоритмы стерео-визуализации.
- а. Содержание и математические модели создания стерео-изображений.
- b. Технологии разделения изображений между правым и левым глазом.
- с. Реализации цветового анаглифа.

Критерии оценивания (оценочное средство - Собеседование)

Оценка	Критерии оценивания
зачтено	Студент дал развернутый ответ на все вопросы без существенных ошибок.
не зачтено	При ответе студент допускает грубые ошибки в основном материале.

5.1.3 Типовые задания (оценочное средство - Тест) для оценки сформированности компетенции ОПК-2:

- 1. Тип одиночный выбор.
 - Что означает термин Visual Computing?
 - вычисления, обеспечивающие зрение роботов
 - высокопроизводительные вычисления в области компьютерной графики в широком смысле
 - высокопроизводительная обработка видеосъемки

- синтез изображений виртуальной реальности
- вычисления, связанные с человеко-машинным интерфейсом
- 2. Тип одиночный выбор.

Какая группа методов современной компьютерной графики обеспечивает наибольшую

реалистичность визуализации

- Методы растеризации
- Методы трассировки лучей
- Методы излучательности (Radiosity)
- Методы глобального освещения
- 3. Тип одиночный выбор.

Медицинская 3D визуализация это:

- 3D визуализация трехмерных скалярных полей
- 3D визуализация полей высот
- 4. Для количественной оценки фотометрических величин во всем оптическом диапазоне служит ... система единиц
- 1) волновая 2) спектральная 3) энергетическая
- 5. Функция относительной спектральной чувствительности максимальна в ... области спектра
 - 1) красной 2) зелёной 3) фиолетовой 4) ультрафиолетовой

Критерии оценивания (оценочное средство - Тест)

Критерии оценивания
Как минимум 80% правильных ответов в тесте
менее 80% правильных ответов в тесте

5.2. Описание шкал оценивания результатов обучения по дисциплине при промежуточной аттестации

Шкала оценивания сформированности компетенций

				PP 0 2 4111			
Уровен ь сформи рованн ости компет	плохо	неудовлетвор ительно	удовлетво рительно	хорошо	очень хорошо	отлично	превосходно
енций (индик атора	не зач	тено			зачтено		
достиж ения							

компет							
<u>Знания</u>	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки	Минимальн о допустимы й уровень знаний. Допущено много негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько несуществе нных ошибок	Уровень знаний в объеме, соответств ующем программе подготовк и. Ошибок нет.	Уровень знаний в объеме, превышающе м программу подготовки.
Умения	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы основные умения. Имели место грубые ошибки	Продемонс трированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме	Продемонс трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи. Выполнены все задания в полном объеме, но некоторые с недочетами .	Продемонс трированы все основные умения. Решены все основные задачи с отдельным и несуществ енными недочетам и, выполнены все задания в полном объеме	Продемонстр ированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
<u>Навыки</u>	Отсутствие базовых навыков. Невозможность оценить наличие навыков вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы базовые навыки. Имели место грубые ошибки	Имеется минимальн ый набор навыков для решения стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и	Продемонс трированы базовые навыки при решении стандартны х задач без ошибок и недочетов	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов	Продемонстр ирован творческий подход к решению нестандартны х задач

Шкала оценивания при промежуточной аттестации

0)ценка	Уровень подготовки					
	превосходно Все компетенции (части компетенций), на формирование которых дисциплина, сформированы на уровне не ниже «превосходно», продемов знания, умения, владения по соответствующим компетенциям на ур предусмотренного программой						
	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично».						
зачтено	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо»					
	хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо».					
	удовлетворитель	Все компетенции (части компетенций), на формирование которых направлена					

	но	дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы			
		одна компетенция сформирована на уровне «удовлетворительно»			
	неудовлетворите Хотя бы одна компетенция сформирована на уровне «неудовлетворительно».				
	льно				
не зачтено					
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»			

5.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения на промежуточной аттестации с указанием критериев их оценивания:

5.3.1 Типовые задания (оценочное средство - Контрольные вопросы) для оценки сформированности компетенции ОПК-2

- 1. Компьютерная графика в системе современной науки и технологий.
- а. Компьютерная графика в информационных системах. Классификация разделов компьютерной графики в широком смысле.
- b. Соотношение курсов Компьютерная графика и Современная компьютерная графика.
- с. Современные открытые библиотеки и системы: VTK, ITK, ParaView, CGAL, Open CASCADE, SALOME.
- 2. Научная и инженерная визуализация. Алгоритмы объемной визуализации.
- a. Метод Raycasting и прямая визуализация объема (Direct Volume Randering). Достоинства лучевых методов. Процедура интерполяции и классификации при выборке из экспериментальных 3D данных, содержание и проблемы. Transfer Function.
- b. Математическая модель трассировки луча: интеграл объемного рендеринга и процедура численного интегрирования вдоль луча в модели с постклассификацией.
- с. Случайный сдвиг (jittering) стартовых позиций луча и метод количественной оценки качества визуализации. Рекомендованные частоты выборки.
- 3. Научная и инженерная визуализация. Алгоритмы объемной визуализации.
- а. Предынтегрированная визуализация и виртуальные выборки.
- b. Оптимизационные стратегии. с. Способы накопления цвета вдоль луча.
- 4. Алгоритмы стерео-визуализации.
- а. Содержание и математические модели создания стерео-изображений.
- b. Технологии разделения изображений между правым и левым глазом.
- с. Реализации цветового анаглифа.
- 5. Архитектура современных графических процессоров (GPU) для графики и вычислений. Вычисления общего назначения на GPU.
- а. Базовые архитектуры вершинного и фрагментного шейдеров
- b. Сравнительная характеристика архитектуры G80 и современных графических процессоров Fermi и Kepler.

- 6. Архитектура современных графических процессоров (GPU) для графики и вычислений. Вычисления общего назначения на GPU.
- а. Соотношение версий OpenGL, MS DirectX и поколений графических процессоров
- b. Сравнительная характеристика графических конвейеров от DirectX9 до DirectX11: от вершинного и фрагментного шейдеров к геометрическому и Hull Shader, Tesselator и Domain Shader.
- 7. Сегментация 3D данных. а. Методы сегментации 2D и 3D данных: кластеризация однородных областей; разрастания регионов; Ксредних; Слияние/разделение областей (region merging/splitting); метод Canny.
- 8. Реконструкция поверхностей.
- а. Метод Marching Cubes. Структуризация и параметризация его результата.
- 9. Сеточные методы моделирования поверхностей и тел a. Edge Based и Face Based структуры хранения сеточных данных. Упрощение сеток.
- 10. Сеточные методы моделирования поверхностей и тел а. Сплайны и методы подразбиения кривых и поверхностей.
- 11. Методы и алгоритмы моделирования глобального освещения.
- а. Энергетический подход. Основы фотометрии.
- b. Взаимодействие света с поверхностью. BRDF (ДФОС) и ее свойства.
- с. Геометрия моделей затенения.
- 12. Методы и алгоритмы моделирования глобального освещения.
- а. Уравнение визуализации. Площадная и полусферическая форма.
- b. Стохастическая трассировка пути. Прямое и вторичное освещение.
- 13. Методы и алгоритмы моделирования глобального освещения.
- а. Метод фотонных карт.
- b. Генерация случайного направления на сфере
- 14. Трассировка лучей в реальном времени Оптимизация вычислений в визуализации глобального освещения 3D сцен
- а. Трассировка лучей как основа расчета глобального освещения. Алгоритм пересечения луча с треугольником. Различия между трассировкой лучей и путей. История развития методов глобального 8 освещения
- 15. Трассировка лучей в реальном времени Оптимизация вычислений в визуализации глобального освещения 3D сцен а. Ускоряющие структуры. Кd-деревья b. Ускоряющие структуры. ВVH-деревья
- 16. Методы анимации сцен и персонажей
- а. Основные принципы и методы анимации сцен и персонажей.
- b. Скелетная анимация.

Критерии оценивания (оценочное средство - Контрольные вопросы)

Оценка	Критерии оценивания
зачтено	Студент ответил на большую часть вопросов возможно с незначительными недочетами.
не зачтено	При ответе студент допускает грубые ошибки в основном материале и решении стандартных задач.

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература:

1. Алгоритмические основы современной компьютерной графики / Куликов А.И., Овчинникова Т.Э. - Москва : ИНТУИТ, 2016., https://e-lib.unn.ru/MegaPro/UserEntry? Action=FindDocs&ids=662740&idb=0.

Дополнительная литература:

1. Малявко А. А. Параллельное программирование на основе технологий openmp, cuda, opencl, mpi : учебное пособие / А. А. Малявко. - 3-е изд. ; испр. и доп. - Москва : Юрайт, 2023. - 135 с. - (Высшее образование). - ISBN 978-5-534-14116-0. - Текст : электронный // ЭБС "Юрайт"., https://e-lib.unn.ru/MegaPro/UserEntry?Action=FindDocs&ids=847643&idb=0.

Программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины):

Интернет-ресурсы:

- 1) Турлапов В.Е. «Компьютерная графика ДО» https://e-learning.unn.ru/course/view.php?id=804
- 2) Боголепов Д., Турлапов В. Компьютерная графика в инженерном анализе и научной визуализации. ИНТУИТ (http://www.intuit.ru/studies/courses/587/443/info)
- 3) Ресурсы конференции SIGGRAPH (www.siggraph.org)
- 4) Библиотека OpenTK https://github.com/opentk/opentk
- 5) Спецификации OpenGL и GLSL https://www.opengl.org/
- 6) Krivanec Jaroslav papers: http://cgg.mff.cuni.cz/~jaroslav/papers/

Программное обеспечение:

- 1) MS Windows 8|10, установленная на персональном компьютере обучающегося
- 2) MS Visual Studio Express 2015 или MS Visual Studio Express 2015 для Web (https://www.microsoft.com/ru-ru/SoftMicrosoft/vs2015Web.aspx)
- бесплатная версия (на персональном компьютере обучающегося).
- 3) OpenGL (www.opengl.org), лицензия BSD
- 4) NVIDIA CUDA, актуальной версии (лицензия BSD)
- 5) NVIDIA OptiX, актуальной версии (лицензия BSD)

7. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены мультимедийным оборудованием (проектор, экран), техническими средствами обучения, компьютерами.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ОС ННГУ по направлению подготовки/специальности 02.04.02 - Фундаментальная информатика и информационные технологии.

Автор(ы): Турлапов Вадим Евгеньевич, доктор технических наук, доцент.

Рецензент(ы): д.т.н., профессор кафедры ИАНИ Старостин Н.В.

Заведующий кафедрой: Мееров Иосиф Борисович, кандидат технических наук.

Программа одобрена на заседании методической комиссии от 13.12.2023, протокол № 3.