МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт информационных технологий, математики и механики

(факультет / институт / филиал)

УТВЕРЖДЕНО президиумом Ученого совета ННГУ протокол от «14» декабря 2021 г. № 4

Рабочая программа дисциплины

Физика

(наименование дисциплины (модуля))

Уровень высшего образования **бакалавриат**

(бакалавриат / магистратура / специалитет)

Направление подготовки / специальность 01.03.02 Прикладная математика и информатика

(указывается код и наименование направления подготовки / специальности)

Направленность образовательной программы Прикладная математика и информатика (общий профиль)

(указывается профиль / магистерская программа / специализация)

Форма обучения

очная

(очная / очно-заочная / заочная)

Нижний Новгород

2022 год

1. Место дисциплины в структуре ООП

Дисциплина относится к части, формируемой участниками образовательных отношений. Код дисциплины Б1.В.02

№ вари	Место дисциплины в учебном плане образовательной	Стандартный текст для автоматического заполнения в конструкторе РПД
анта	программы	Sanoments B Rone 1 p, respectively
2	Блок 1. Дисциплины (модули)	Дисциплина Б1.В.02 «Физика» относится к части
	Часть, формируемая	ООП направления подготовки 01.03.02 «Прикладная
	участниками образовательных	математика и информатика», формируемой
	отношений	участниками образовательных отношений.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

	Планируемые резуль в соответствии с инд	Наименование оценочного				
Формируемые компетенции (код, содержание компетенции)	Индикатор достижения компетенции* (код, содержание индикатора)	Результаты обучения по дисциплине**	средства			
ПК-13 Способен участвовать в исследовании математических моделей в естественных науках и технике	ПК-13.1. Знает методы создания, анализа и исследования математических моделей в естественных науках и технике	Знает понятия, основные законы и принципы, описывающие физические явления, а также следствия, вытекающие из этих законов и принципов, имеющие теоретическое и прикладное значение; математические методы, используемые для постановки и решения задач электродинамики	Собеседование			
	ПК-13.3. Умеет корректно использовать методы создания, анализа и исследования математических моделей, умеет применять численные и аналитические методы решения базовых математических задач и классических задач	Умеет применять понятия, основные законы и принципы для решения физических задач электродинамики различного уровня сложности.	Тест Контрольная работа			

естествознания в практической деятельности		
ПК-13.4. Владеет навыками использования математических методов обработки информации, полученной в результате экспериментальных исследований	Владеет навыками составления математических моделей, описывающих физические явления электродинамики, и методами их решения и анализа.	Контрольная работа

3. Структура и содержание дисциплины

3.1. Трудоемкость дисциплины

	Очная форма обучения
Общая трудоемкость	4 3ET
Часов по учебному плану	144
в том числе	
аудиторные занятия (контактная работа):	66
- занятия лекционного типа	32
занятия семинарского типа	32
текущий контроль (КСР)	2
самостоятельная работа	42
Промежуточная аттестация – экзамен	36

3.2. Содержание дисциплины

		Контакт взаимодей	гная рабо	реподават	1 ВО	н работа асы
Наименование и краткое содержание разделов и тем дисциплины	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная обучающегося, ча

	1			1	
Электростатическое поле в вакууме: Заряды, силы поля. Электрический заряд. Закон Кулона. Электрическое поле. Напряженность поля Е. Теорема Остроградского — Гаусса. Понятие о потоке. Интегральная форма теоремы. Дифференциальная форма теоремы. Примеры применения теоремы. Работа, энергия, потенциал. Работа кулоновских сил. Теорема о циркуляции вектора Е. Энергия и потенциал электростатического поля. Связь между напряженностью электростатического поля и его потенциалом. Системы зарядов и электрические поля. Электрический диполь. Поле системы зарядов на больших расстояниях. Электрическое поле в диэлектриках: Поле и вещество. Поляризация диэлектрика. Поляризованность Р и связанные заряды. Вектор электрического смещения D. Условия на границе двух диэлектричков. Проводники в электрическом поле: Поле внутри и снаружи проводника. Замкнутая проводящая оболочка. Общая задача электростатики. Метод изображений. Электроемкость. Конденсаторы. Емкость уединенного проводника. Конденсаторы и их соединения. Энергия электрического поля: Энергия заряженных проводников и конденсаторов. Энергия электрического поля. Энергия системы двух тел. Энергия электрического поля и силы.	23	8	8	16	7
Постоянный ток: Основные понятия и определения. Уравнение непрерывности. Закон Ома для участка цепи. Интегральная форма. Закон Ома с точки зрения электронной теории металлов. Дифференциальная форма закона. Зависимость сопротивления от температуры. Стороннее поле. Электродвижущая сила и напряжение. Стороннее поле и ЭДС. Закон Ома для замкнутой цепи. Разветвленные цепи. Правила (законы) Кирхгофа. Работа и мощность тока. Закон Джоуля — Ленца.	19	6	6	12	7
Электромагнетизм. Поле в вакууме: Развитие представления о природе магнетизма. Основные понятия и представления. Сила Лоренца. Поле В. Магнитное поле равномерно движущегося заряда. Вращающий момент. Индукция и напряженность магнитного поля. Магнитное поле тока. Закон Био - Савара — Лапласа. Основные законы магнитного поля: Теорема Гаусса для поля В. Теорема о циркуляции вектора В. Применение теоремы о циркуляции вектора В. Дифференциальная форма законов. Сила Ампера. Закон Ампера. Сила взаимодействия параллельных токов. Сила, действующая на контур с током. Работа по перемещению проводника и контура с током в магнитном поле.	22	7	8	15	7
Магнитное поле в веществе: Намагничение вещества. Намагниченность J. Циркуляция вектора J.Вектор H. Граничные условия для векторов В и H. Поле в однородном магнетике. Типы магнетиков. Ферромагнетизм. Электромагнитная индукция: Явление электромагнитной индукции и сила Лоренца.	20	7	6	13	7

Электродвижущая сила индукции. Явление индукции в неподвижном проводнике. Закон индукции Фарадея и правило Ленца. Электромагнитная индукция и закон сохранения энергии. Частные случаи индукции. Индукционные токи в сплошных проводниках. Явление самоиндукции. Взаимная индукция. Энергия электромагнитного поля.					
Цепи переменного тока: Стационарные цепи переменного тока. Элементарные сведения о комплексных числах. Основы символического метода расчета электрических цепей. Нестационарные состояния (переходные процессы) в цепях переменного тока.	11	2	2	4	7
Уравнения Максвелла: Ток смещения. Система уравнений Максвелла. Энергия поля и ее поток. Вектор Умова-Пойнтинга	11	2	2	4	7
Текущий контроль (КСР)	2			2	
Промежуточная аттестация – экзамен	36				
Итого	144	32	32	66	42

Текущий контроль успеваемости реализуется в формах опросов на занятиях семинарского типа.

Промежуточная аттестация проходит в традиционной форме (экзамен).

4. Учебно-методическое обеспечение самостоятельной работы обучающихся а. Виды самостоятельной работы студентов

Самостоятельная работа студента при изучении дисциплины «Физика» включает выполнение домашних заданий, подготовку к тестированию и экзамену. Для самоконтроля у студента имеется возможность удаленного тестирования по дистанционному лекционному курсу. http://e-learning.unn.ru/

Самостоятельная работа заключается в ознакомлении с теоретическим материалом по учебникам, указанным в списке литературы, решении практических задач, подготовке ответов на вопросы самоконтроля. Самостоятельная работа может происходить как в читальном зале библиотеки, так и в домашних условиях.

Самостоятельная работа под контролем преподавателя направлена на активизацию познавательной деятельности студента и установление «обратной связи» между студентом и преподавателем.

б. Образовательные материалы для самостоятельной работы студентов, практические задания для проведения текущего контроля

1. Физика. Электромагнетизм (семестр 5). Электронно-управляемый курс. Грезина А.В., Никифорова И.В., Панасенко А.Г., 2014. https://e-learning.unn.ru/enrol/index.php?id=827

Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведены в п. 5.2.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень	Шкала оценивания сформированности компетенций							
сформирован ности компетенций (индикатора	плохо	неудовлетво рительно	удовлетвори тельно	хорошо	очень хорошо	отлично	превосходно	
достижения компетенций)	Не за	чтено			Зачтено			
Знания	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту знаний вследствие отказа обучающегос я от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответствую щем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающе м программу подготовки.	
<u>Умения</u>	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстр ированы основные умения. Имели место грубые ошибки.	Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме.	Продемонстри рованы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстри рованы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстр ированы все основные умения, решены все основные задачи с отдельными несущественным недочетами, выполнены все задания в полном объеме.	Продемонстр ированы все основные умения, решены все основные задачи. Выполнены все задания, в полном объеме без недочетов	
<u>Навыки</u>	Отсутствие владения материалом. Невозможнос ть оценить наличие навыков вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы базовые навыки. Имели место грубые ошибки.	Имеется минимальны й набор навыков для решения стандартных задач с некоторыми недочетами.	Продемонст- рированы базовые навыки при решении стандартных задач с некоторыми недочетами	Продемонстри рованы базовые навыки при решении стандартных задач без ошибок и недочетов.	Продемонстр ированы навыки при решении нестандартных задач без ошибок и недочетов.	Продемонстр ирован творческий подход к решению нестандартн ых задач.	

Шкала оценки при промежуточной аттестации

Оц	енка	Уровень подготовки
зачтено	Превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно»

	Отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично», при этом хотя бы одна компетенция сформирована на уровне «отлично»
	Очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо», при этом хотя бы одна компетенция сформирована на уровне «очень хорошо»
	Хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо», при этом хотя бы одна компетенция сформирована на уровне «хорошо»
	Удовлетворительно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»
не зачтено	Неудовлетворительно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно», ни одна из компетенций не сформирована на уровне «плохо»
	Плохо	Хотя бы одна компетенция сформирована на уровне «плохо»

Критерий оценки результатов тестирования

Баллы, %	Оценка
99-100	Превосходно
91-98	Отлично
86-90	Очень хорошо
71-85	Хорошо
51-70	Удовлетворительно
31-50	Неудовлетворительно
0-30	Плохо

Критерии оценок выполнения контрольной работы

(каждая задача оценивается в 2 балла)

Решена полностью	2
Решена основная часть задачи, или задача решена с недочетами	1,5
Решена задача наполовину	1
Сделан первый этап в решении задачи	0,5
Нет решения	0

Суммарная оценка выполнения контрольной работы

J II I I I I I I I I I I I I I I I I I		
Количество баллов	Оценка	
6	Отлично	
5-5,5	Очень хорошо	
4-4,5	Хорошо	
2-3,5	Удовлетворительно	
0,5-1,5	Неудовлетворительно	
0	Плохо	

5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения

5.2.1 Контрольные вопросы

Вопросы	Код компетенции
	(согласно РПД)

1. Электрический заряд. Закон Кулона	ПК-13
2. Электрическое поле. Напряженность поля Е	ПК-13
3. Теорема Остроградского – Гаусса для поля Е (интегральная форма)	ПК-13
4. Теорема Остроградского – Гаусса для поля E (дифференциальная форма)	ПК-13
5. Примеры применения теоремы Остроградского - Гаусса для поля Е	ПК-13
6. Работа кулоновских сил. Теорема о циркуляции вектора Е	ПК-13
7. Энергия и потенциал электростатического поля	ПК-13
8. Связь между напряженностью электростатического поля и его потенциалом	ПК-13
9. Электрический диполь	ПК-13
10. Поле системы зарядов на больших расстояниях	ПК-13
11. Поле и вещество. Поляризация диэлектрика	ПК-13
12. Поляризованность Р и связанные заряды	ПК-13
13. Вектор электрического смещения D	ПК-13
14. Условия на границе двух диэлектриков	ПК-13
15. О поле внутри и снаружи проводника	ПК-13
16. Замкнутая проводящая оболочка	ПК-13
17. Общая задача электростатики. Метод изображений	ПК-13
18. Электроемкость. Емкость уединенного проводника	ПК-13
19. Электроемкость. Емкость системы проводников	ПК-13
20. Плоские конденсаторы и их соединения	ПК-13
21. Сферические конденсаторы и их соединения	ПК-13
22. Цилиндрические конденсаторы и их соединения	ПК-13
23. Энергия заряженных проводников и конденсаторов	ПК-13
24. Энергия электрического поля	ПК-13
25. Электрическая энергия системы двух и более тел	ПК-13
26. Энергия электрического поля и силы	ПК-13
27. Постоянный ток. Уравнение непрерывности	ПК-13
28. Закон Ома для участка цепи	ПК-13
29. Закон Ома с точки зрения электронной теории металлов. Зависимость сопротивления от температуры	ПК-13

30. Дифференциальная форма закона Ома	ПК-13
31. Стороннее поле. Электродвижущая сила и напряжение	ПК-13
32. Закон Ома для замкнутой цепи	ПК-13
33. Разветвленные цепи. Правила (законы) Кирхгофа	ПК-13
34. Работа и мощность тока. Закон Джоуля – Ленца	ПК-13
35. Развитие представления о природе магнетизма.	ПК-13
36. Основные понятия и представления о природе магнетизма	ПК-13
37. Сила Лоренца. Поле В	ПК-13
38. Магнитное поле равномерно движущегося заряда	ПК-13
39. Вращающий момент. Индукция и напряженность магнитного поля	ПК-13
40. Магнитное поле тока. Закон Био - Савара – Лапласа	ПК-13
41. Интегральная форма основных законов магнитного поля	ПК-13
42. Дифференциальная форма основных законов магнитного поля	ПК-13
43. Примеры применения теоремы о циркуляции вектора В	ПК-13
44. Сила Ампера. Закон Ампера	ПК-13
45. Сила взаимодействия параллельных токов	ПК-13
46. Работа по перемещению проводника и контура с током в магнитном поле	ПК-13
47. Намагничение вещества. Намагниченность J	ПК-13
48. Токи намагничения I' .	ПК-13
49. Теорема о циркуляция вектора J	ПК-13
50. Векторы В, Ј, Н. Их взаимная связь и роль в описании магнитных полей	ПК-13
51. Граничные условия для векторов В и Н	ПК-13
52. Поле в однородном магнетике	ПК-13
53. Явление электромагнитной индукции и сила Лоренца	ПК-13
54. Электродвижущая сила индукции	ПК-13
55. Явление индукции в неподвижном проводнике. Индукционные токи в сплошных проводниках	ПК-13
56. Закон индукции Фарадея и правило Ленца	ПК-13
57. Электромагнитная индукция и закон сохранения энергии	ПК-13

58. Частные случаи индукции. Явление самоиндукции	ПК-13
59. Частные случаи индукции. Взаимная индукция	ПК-13
60. Энергия электромагнитного поля	ПК-13
61. Основы символьного метода расчета электрических цепей переменного тока	ПК-13
62. Нестационарные состояния (переходные процессы) в цепях переменного тока	ПК-13
63. Связанные колебательные контуры	ПК-13
64. Ток смещения	ПК-13
65. Система интегральных уравнений Максвелла	ПК-13
66. Система дифференциальных уравнений Максвелла	ПК-13
67. Энергия поля и ее поток. Вектор Умова – Пойнтинга	ПК-13

5.2.2. Типовые тестовые вопросы для оценки сформированности компетенции ПК-13 в виде знаний

1. Тип – одиночный выбор.

Закон сохранения заряда выполняется в ...

- любой системе
- консервативной системе
- в электрически изолированной системе

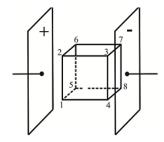
2. Тип – одиночный выбор.

Какая из формулировок теоремы Гаусса содержит ошибку?

$$\oint \mathbf{E} \cdot d\mathbf{s} = \frac{1}{\varepsilon_0} \int \rho dV$$

$$\bullet \qquad \oint E_n \cdot ds = \frac{1}{\varepsilon_0} \, q_{\text{внутр}}$$

$$\bullet \qquad \oint E \cdot ds = \frac{1}{\varepsilon_0} q_{\text{внутр}}$$


3. Тип – одиночный выбор.

Эквипотенциальные поверхности могут пересекаться? Касаться?

- могут пересекаться
- могут касаться
- не могут ни пересекаться, ни касаться

4. Тип – одиночный выбор.

В электрическом поле плоского конденсатора находится куб небольшого размера. Укажите грани куба, являющиеся эквипотенциальными (см. рис.)

- все грани
- только 1-5-8-4; 2-3-7-8
- только 1-2-6-5; 4-3-7-8
- только 1-2-3-4; 5-6-7-8

5. Тип – одиночный выбор.

Вблизи поверхности проводника...

- $E_n = 0, E_{\tau} \neq 0$
- $E_{\tau} = 0, E_n \neq 0$
- $E_{\tau} \neq 0, E_{n} \neq 0$

6. Тип – одиночный выбор.

Поле в проводнике внутри полости, в которой есть нескомпенсированный заряд ($\sum q_i \neq 0$) ...

- отсутствует, если нет внешнего поля
- может быть скомпенсировано ($E_{\mbox{\tiny BHYTP}} = 0$) специально подобранным внешним полем
- $\mathbf{E}_{_{\mathrm{BHyrp}}} = \mathbf{E}(\mathbf{r})$ зависит от распределения зарядов внутри полости

7. Тип – одиночный выбор.

Заряд q помещен над проводящей плоскостью. Методом изображений можно найти...

- полную информацию для электрического поля над плоскостью ($\varphi(\mathbf{r})$)
- только силу взаимодействия заряда с плоскостью
- только распределение индуцированных зарядов на плоскости

8. Тип – одиночный выбор.

Электроемкость конденсатора C = q/U ...

- зависит от распределения заряда на обкладках, т.е. от того на какой обкладке заряд $q>0\,$, а на какой $q<0\,$; при смене знаков заряда изменяется знак емкости
- ullet зависит только от |q|
- не зависит от заряда

5.2.3. Пример контрольной работы для оценки сформированности компетенции ПК-13 *Раздел* "Электростатика"

Вариант №1

Задача №1

Модули напряженности электрического поля, созданного точечным зарядом q, в точках A и B равны соответственно E_A и E_B . Определите модуль напряженности электрического поля в точке C, лежащей посередине между точками A и B (заряд и все точки расположены на одной линии).

Задача №2

2. Получить зависимость E(r), согласно которой спадает напряженность электрического поля, создаваемого равномерно заряженным с линейной плотностью λ прямым стержнем длины 2a, если r - расстояние от центра стержня до точки, лежащей на прямой, перпендикулярной к стержню и проходящей через его центр.

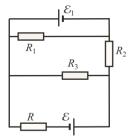
Задача №3

Найти емкость плоского конденсатора, пространство между обкладками которого заполнили двумя диэлектриками с толщинами d_1 и d_2 с проницаемостями ε_1 и ε_2 , соответственно. Площадь каждой обкладки равна S.

Раздел "Постоянный ток"

Вариант №1

Задача №1


Определить падение напряжения U на медном проводе, по которому течет ток I. Удельное сопротивление меди ρ , длина L и диаметр провода d известны.

Задача №2

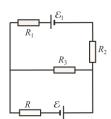
Найти внутреннее сопротивление r генератора, если известно, что мощность P, выделяющаяся во внешней цепи, одинакова при внешних сопротивлениях R_1 и R_2 .

Задача №3

Получить зависимость тока через сопротивление R от параметров, указанных на схеме. Внутренние сопротивления источников пренебрежимо малы.

5.2.4. Вопросы для собеседования для оценки сформированности компетенции ПК-13 в виде знаний

- 1. Закон Кулона
- 2. Электрическое поле и его характеристики


- 3. Теорема Остроградского Гаусса
- 4. Теорема о циркуляции вектора Е
- 5. Энергия и потенциал электростатического поля
- 6. Поле системы зарядов на больших расстояниях
- 7. Электрическое поле в диэлектрике. Поляризация диэлектрика
- 8. Вектор электрического смещения **D**, теорема Остроградского Гаусса для **D**
- 9. Поле внутри и снаружи проводника
- 10. Электроемкость. Конденсаторы
- 11. Энергия заряженных проводников и конденсаторов
- 12. Энергия системы зарядов
- 13. Уравнение непрерывности
- 14. Закон Ома для участка цепи
- 15. Стороннее поле и ЭДС
- 16. Разветвленные цепи. Правила (законы) Кирхгофа
- 17. Работа и мощность тока. Закон Джоуля Ленца
- 18. Квазистационарные поля и токи. Переходные процессы в цепи с конденсатором.
- 19. Сила Лоренца. Поле В
- 20. Магнитное поле тока. Закон Био Савара Лапласа
- 21. Теорема Гаусса для поля В
- 22. Теорема о циркуляции вектора В
- 23. Закон Ампера
- 24. Работа по перемещению проводника и контура с током в магнитном поле
- 25. Намагничение вещества. Намагниченность Ј
- **26**. Вектор **H**
- 27. Типы магнетиков. Ферромагнетизм
- 28. Явление электромагнитной индукции и сила Лоренца
- 29. Электродвижущая сила индукции
- 30. Закон индукции Фарадея и правило Ленца
- 31. Явление самоиндукции
- 32. Взаимная индукция
- 33. Энергия электромагнитного поля
- 34. Ток смещения
- 35. Система уравнений Максвелла
- 36. Энергия поля и ее поток. Вектор Умова-Пойнтинга

5.2.5. Пример задач, выносимых на экзамен для оценки сформированности компетенции ПК-13

Задачи выбираются случайным образом.

Задача №1

Получить зависимость тока через сопротивление R от параметров, указанных на схеме. Внутренние сопротивления источников пренебрежимо малы

6. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 15-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество и магнетизм. Волны. Оптика 2019. 500 с. ISBN 978-5-8114-3989-8. Текст: электронный // Лань-:

- электронно-библиотечная система. URL: https://e.lanbook.com/book/113945 (дата обращения: 05.10.2021). Режим доступа: для авториз. пользователей.
- 2. Иродов, И. Е. Электромагнетизм. Основные законы: учебное пособие / И. Е. Иродов; художник Н. А. Лозинская. 12-е изд. Москва: Лаборатория знаний, 2021. 322 с. ISBN 978-5-93208-520-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/172251 (дата обращения: 05.10.2021). Режим доступа: для авториз. пользователей.
- 3. Саушкин В.В. Физика. Часть 2: Учебное пособие / Саушкин В.В., Матвеев Н.Н., Лисицын В.И. Воронеж: ВГЛТУ им. Г.Ф. Морозова, 2016. 145 с. (доступно в ЭБС «Знаниум», Режим доступа: http://znanium.com/bookread2.php?book=858708
- 4. Фриш, С.Э. Курс общей физики. В 3-х тт. Т.2. Электрические и электромагнетические явления [Электронный ресурс]: учеб. / С.Э. Фриш, А.В. Тиморева. Электрон. дан. Санкт-Петербург: Лань, 2009. 528 с. Режим доступа: https://e.lanbook.com/book/418?category_pk=922#authors
- б) дополнительная литература:
- 1. Иродов И. Е. Электромагнетизм. Основные законы. 9-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2014. 319 с. 40 экз.
- в) программное обеспечение и Интернет-ресурсы

Фонд образовательных электронных ресурсов ННГУ им. Н.И. Лобачевского.

- 1. http://e-learning.unn.ru/
- 2. http://www.unn.ru/books/resources.html

7. Материально-техническое обеспечение дисциплины

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду ННГУ.

Программа составлена в соответствии с требованиями ОС ННГУ 01.03.02 Прикладная математика и информатика.

Автор: к.ф.-м.н., доцент кафедры прикладной математики А.Г. Панасенко

Рецензент: д.т.н., профессор НГТУ им. Р.Е. Алексеева Ломакина Л.С.

Заведующий кафедрой прикладной математики: д.ф.-м.н. М.В. Иванченко

Программа одобрена на заседании методической комиссии института информационных технологий, математики и механики

от 1 декабря 2021 года, протокол № 2.