Аннотации рабочих программ дисциплин (модулей) Направление 01.03.01 Математика (Общий профиль)

Философия

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью курса является развитие у студентов интереса к философскому осмыслению действительности, особенностям исследования научного инструментария, мирового историко-культурного процесса, человеческой жизни.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.01 «Философия» относится к обязательной части блока 1 «Дисциплины (модули)» ОПОП.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции:

УК-5 Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах

Краткая характеристика дисциплины (модуля)

- Тема 1. Общее понятие философии, её смысл и значение.
- Тема 2. Древняя восточная философия: Древний Китай, Индия.
- Тема 3. Античная философия
- Тема 4. Средневековая философия: патристика и схоластика.
- Тема 5. Философия эпохи Возрождения
- Тема 6. Европейская философия XVII философские основы научной революции.
- Тема 7. Философия Просвещения.
- Тема 8. Немецкая классическая философия. Марксизм.
- Тема 9. Русская философия конца XIX начала XX века.
- Тема 10. Философия XIX-XX веков: проблемы и направления.
- Тема 11. Философская онтология.
- Тема 12. Познание, его возможности и границы.
- Тема 13: Философская антропология: природа человека и смысл его жизни.
- Тема 14. Аксиология учение о ценностном мире человека.
- Тема 15. Социальная философия.
- Тема 16. Онтология сознания.
- Тема 17. Философское видение будущего человечества

Формы промежуточного контроля.

Экзамен — 7 семестр.

История (история России, всеобщая история)

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «История» являются формирование у студентов современной концепции исторического развития России, представлений об основных особенностях, движущих социальных силах и периодах ее социального, экономического, политического и культурного развития, развитие навыков исследовательского и логического мышления, навыков создания научных работ гуманитарного направления, ведения научных дискуссий, развитие навыков работы с разноплановыми источниками, осуществление эффективного поиска информации и критики источников, получение, обработка и сохранение источников информации, формирование и аргументированное отстаивание собственной позиций по различным проблемам истории.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.02 «История (история России, всеобщая история)» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 3 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции:

УК-5 Способен воспринимать межкультурное разнообразие общества в социальноисторическом, этическом и философском контекстах

Краткая характеристика дисциплины (модуля)

- 1. Введение
- 2. Формирование Российского феодального государства
- 3. Россия в эпоху Ивана IV. Смутное время. Второе земское ополчение. Кузьма Минин и Дмитрий Пожарский
- 4. Россия в Новое время. Петр Великий и его реформы. Образование Российской Империи
- 5. Развитие капитализма в России. Великие реформы 1860-х годов
- 6. Россия в начале XX века: экономическое и политическое развитие. Опыт российского парламентаризма
- 7. Россия в Первой мировой войне. Февральская революция 1917 г Современная дискуссия о её характере
- 8. Октябрьская революция. Гражданская война и иностранная военная интервенция 1917-1922 гг
- 9. НЭП. Социалистическая индустриализация и коллективизация сельского хозяйства. СССР в 1930-е годы
- 10. СССР в годы Великой Отечественной войны
- 11. Проблемы послевоенного развития СССР 1945-1953 гг.
- 12. СССР в 1953-1964 гг.: социально-экономические проблемы
- 13. СССР в 1953-1964 гг.: проблемы идеологии и политики
- 14. Внешняя политика советского руководства в 1950-1970-е годы
- 15. СССР в 1964-1985 гг.: нарастание кризисных явлений в социально-экономической сфере
- 16. СССР в 1964-1985 гг.: политика и идеология. Распад Советского Союза и его последствия
- 17. Формирование государственности новой России. Противоречия развития

Формы промежуточного контроля

Зачет — 1 семестр

Основы экономики

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Основы экономики» является формирование у студентов компетенций, связанных с пониманием механизмов функционирования рыночной инфраструктуры и ведением предпринимательской деятельности в современных условиях..

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.03 «Основы экономики» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 3 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни

УК-9 Способен принимать обоснованные экономические решения в различных областях жизнедеятельности.

Краткая характеристика дисциплины (модуля)

Основные разделы курса

Тема 1. Введение в экономику

Тема 2. Теория прав собственности

Тема 3. Основы микроэкономики

Тема 4. Основы макроэкономики

Формы промежуточного контроля

Экзамен — 2 семестр.

Правоведение

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Правоведение» является формирование у студентов необходимых знаний об основах государства и права, умений, навыков базового характера в сфере юриспруденции для применения их в своей деятельности.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.04 «Правоведение» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 3 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений.

УК-10. Способен формировать нетерпимое отношение к коррупционному поведению.

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Основы теории государства.
- Основные понятия о праве.
- Основы конституционного права.
- Основы административного права.
- Основы трудового права.
- Основы уголовного права.
- Основы гражданского права.
- Основы семейного права.

Формы промежуточного контроля

Зачет — 8 семестр.

Иностранный язык

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Иностранный язык» является формирование и развитие у студентов необходимого и достаточного уровня коммуникативной компетенции для решения профессиональных задач и межличностного общения на иностранном языке.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.05 «Иностранный язык» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 5 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-4 Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах)

Краткая характеристика дисциплины (модуля)

Основные разделы курса

1 семестр

- Проблемы, дилеммы, альтернативы. Мне везет
- Мой учебный стиль. Люди: их характеры, умения. Личностные качества. Речевые интенции agreement/disagreement
- Качества, необходимые исследователю, студенту и т.д. Речевые интенции «Выражения» собственного мнения
- Характерные особенности различных наций.
- Сравнительная характеристика англичан и американцев
- Речевые интенции «surprise». Национальныеособенности: the English, the Irish, the Scots, the Welsh
- Речевые интенции "sympathy, encouragement, consolation". Национальные особенности the Scots, the Welsh
- Мои увлечения. Способы проведения досуга
- Мои планы на лето. Речевые интенции «suggestions, offers»

2 семестр

- Образование и профессиональные перспективы. Речевые интенции «suggestions, offers»
- Обращение к собеседнику за распоряжением или советом
- Что такое истеблишмент? Образование в Англии. «Oxbridge»
- Ваш научный руководитель. Как написать курсовую работу?
- Борьба за власть: цели и средства. Вы уникальны
- Ваши планы на будущее
- Университетская библиотека
- Район высоких технологий. Ваше мнение о будущем
- Как улучшить память?

Формы промежуточного контроля

Зачет — 1 семестр, экзамен — 2 семестр.

Безопасность жизнедеятельности

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Безопасность жизнедеятельности» является изучение основ безопасного взаимодействия человека со средой обитания (производственной, бытовой, городской) и основ защиты от негативных факторов в опасных и чрезвычайных ситуациях.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.06 «Безопасность жизнедеятельности» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-8 Способен создавать и поддерживать безопасные условия жизнедеятельности, в том числе при возникновении чрезвычайных ситуаций

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Тема 1. Введение в безопасность жизнедеятельности. Основные понятия, термины и определения. Человек и техносфера.
 - Тема 2. Загрязнение окружающей природной среды. Экологическая безопасность.
 - Тема 3. Психофизиологические и эргономические основы безопасности
- Тема 4. Безопасность в чрезвычайных ситуациях (ЧС). Классификация и общая характеристика ЧС. РСЧС. Система гражданской обороны
 - Тема 5. Чрезвычайные ситуации природного характера
 - Тема 6. Чрезвычайные ситуации техногенного характера
 - Тема 7. Экстремизм и терроризм
- Тема 8. Защита населения при чрезвычайных ситуациях мирного и военного времени: основные принципы, оповещение, эвакуация, использование средств коллективной защиты (СКЗ) и средств индивидуальной защиты (СИЗ)
 - Тема 9. Радиационная безопасность
 - Тема 10. Основы пожаровзрывобезопасности
 - Тема 11. Транспортная безопасность
 - Тема 12. Негативные факторы производственной среды (техносферы)
- Тема 13. Оказание первой доврачебной помощи при экстремальных и чрезвычайных ситуациях
- Тема 14. Управление безопасностью жизнедеятельности. Правовые, нормативнотехнические и организационные основы

Формы промежуточного контроля

Зачет — 3 семестр.

Математический анализ

(наименование дисциплины (модуля))

Цели освоения дисциплины

- ознакомление с фундаментальными методами исследования переменных величин посредством анализа бесконечно малых, основу которого составляет теория дифференциального и интегрального исчисления;
- приобретение навыков математического моделирования различных процессов и закономерностей реального мира;
- подготовка фундаментальной базы для изучения дисциплин: «Дополнительные главы математического анализа», «Дифференциальные уравнения», «Уравнения математической физики», «Теория вероятностей и математическая статистика», «Методы оптимизации», «Вычислительные методы и функциональный анализ», «Математические модели естествознания»; «Численные методы» и др.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.07 «Математический анализ» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 26 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ОПК-3 Способен использовать в педагогической деятельности научные знания в сфере математики и информатики

Краткая характеристика дисциплины (модуля)

Основные разделы курса

1 семестр

- 1. Введение
- 2. Вещественные числа
- 3. 3 Числовые последовательности
- 4. Предел функции.
- 5. Непрерывные функции
- 6. Производная функции
- 7. Основные теоремы о дифференцируемых функциях и их приложения

2 семестр

- 1. Неопределенный интеграл:
- 2. Определенный интеграл
- 3. Приложения определенного интеграла
- 4. Функции многих переменных и пределы
- 5. Непрерывные функции многих переменных
- 6. Дифференцирование функции многих переменных
- 7. Неявно-заданные функции:
- 8. Экстремумы функций многих переменных

3 семестр

- 1. Числовые ряды:
- 2. Функциональные последовательности и ряды
- 3. Степенные ряды
- 4. Несобственные интегралы:
- 5. Определенные интегралы
- 6. Несобственные интегралы
- 7. Ряды Фурье:

4 семестр

- 1. Кратные интегралы
- 2. Криволинейные интегралы
- 3. Поверхностные интегралы
- 4. Теория поля (Векторный анализ)

Формы промежуточного контроля.

Зачет (1-3 семестры), экзамен (1-4 семестры).

Алгебра

(наименование дисциплины (модуля))

Цель освоения дисциплины (модуля).

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов высшей алгебры, линейной алгебры, теории классических алгебраических систем, формирование умений и навыков в решении задач из этих разделов алгебры и геометрии; развитие навыков в постановке и решении практических задач, знакомство с основными вычислительными алгоритмами алгебры.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.08 «Алгебра» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 16 зачетных единиц.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины (модуля).

Семестр 1

- Поле комплексных чисел и алгебраические системы.
- Теория определителей..
- Алгебра матриц.
- Системы линейных алгебраических уравнений.
- Кольцо многочленов

Семестр 2

- Векторное (линейное) пространство.
- Линейные отображения
- Билинейные (полуторалинейные) и квадратичные формы.
- Евклидово (унитарное) пространство.
- Линейные операторы евклидовых и унитарных пространств.
- Тензоры.

Семестр 3

- Группы.
- Действие группы на множестве.
- р-группы, разрешимые и простые группы
- Задание группы образующими и соотношениями
- Конечные и конечнопорожденные абелевы группы.

Формы промежуточного контроля.

Зачет (1-3 семестры), экзамен (1-3 семестры).

Аналитическая геометрия

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Аналитическая геометрия» являются напоминание основных фактов элементарной геометрии, как правило, плохо освоенных в школе; развитие геометрического, в том числе пространственного воображения; овладение применением аппарата векторной алгебры и аналитической геометрии, необходимое для решения естественных задач и освоения других математических дисциплин.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.09 «Аналитическая геометрия» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 8 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

ОПК-3 Способен использовать в педагогической деятельности научные знания в сфере математики и информатики

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

1 семестр

- 1. Векторная алгебра.
- 2. Прямая линия на плоскости.
- 3. Плоскость.
- 4. Прямая линия в пространстве.
- 5. Пучки прямых и связки плоскостей.
- 6. Замена базиса и системы координат.
- 7. Кривые второго порядка.
- 9. Изучение вида кривых второго порядка по их каноническим уравнениям.

2 семестр

- 10.Инварианты кривых второго порядка.
- 11. Уравнение поверхности в пространстве.
- 12. Инварианты поверхностей второго порядка.
- 13. Элементы проективной геометрии.

Формы промежуточного контроля.

Зачет (1–2 семестры), экзамен (1–2 семестры).

Дискретная математика и математическая логика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины являются:

- ознакомление студентов с фундаментальными структурами, понятиями и методами дискретной математики; овладение математическим аппаратом, необходимым для построения и изучения моделей информационных и управляющих систем; подготовка базы для изучения дисциплин, использующих понятия дискретной математики;
- ознакомление студентов с понятиями и фактами, являющимися основой современной математической логики и играющими важную роль в ее приложениях;
- приобретение навыков математического моделирования различных процессов и закономерностей реального мира.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.10 «Дискретная математика и математическая логика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 8 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины (модуля).

1 семестр

- Тема 1. Множества
- Тема 2. Отношения
- Тема 3. Комбинаторика
- Тема 4. Графы
- Тема 5. Алгебра логики

7 семестр

- Тема 1.Элементы логического языка первого порядка
- Тема 2. Модели формул логического языка первого порядка
- Тема 3. Логический вывод
- Тема 4. Канонические формы предложений в логике первого порядка
- Тема 5. Приближенное выражение свойств структур в логике первого порядка
- Тема 6.Приложения логического языка первого порядка к моделированию математических теорий
- Тема 7. Алгоритмическая разрешимость теорий. Метод элиминации кванторов
- Тема 8. Изучение моделей вычислений на примере машины Тьюринга

Формы промежуточного контроля.

Экзамен (1, 7 семестры).

Теория дискретных функций

(наименование дисциплины (модуля))

Цель освоения дисциплины.

Целями освоения дисциплины «Теория дискретных функций» являются фундаментальная подготовка по ряду основных разделам теории дискретных функций: функции алгебры логики, функции k-значной логики, ограниченно-детерминированные функции, вычислимые функции, алфавитное кодирование; овладение математическим аппаратом для дальнейшего использования при решении теоретических и прикладных задач.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.11 «Теория дискретных функций» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины.

Основные разделы дисциплины:

- Функции алгебры логики
- Нормальные формы
- Замкнутые классы
- Теорема о функциональной полноте
- Результаты Поста
- Функции k-значной логики
- Теорема о полноте в *k*-значной логике
- Теорема Яблонского
- Представление функций полиномами
- Теорема Кузнецова

Формы промежуточного контроля.

Зачет – 2 семестр

Дифференциальные уравнения

(наименование дисциплины (модуля))

Цели освоения дисциплины

- Фундаментальная подготовка в области дифференциальных уравнений;
- овладение методами решения основных типов дифференциальных уравнений и их систем;
- овладение современным математическим аппаратом для дальнейшего использования в приложениях.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.12 «Дифференциальные уравнения» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 9 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины

Основные разделы курса

3 семестр

- 1. Понятие дифференциального уравнения.
- 2. Теоремы существования и единственности решения задачи Коши.
- 3. Уравнения первого порядка, не разрешенные относительно производной.
- 4. Общая теория линейных дифференциальных уравнений.
- 5. Линейные дифференциальные уравнения с постоянными коэффициентами.

4 семестр

- 6. Краевые задачи для линейных дифференциальных уравнений второго порядка.
- 7. Общая теория систем линейных дифференциальных уравнений дифференциальных уравнений 1-го порядка.
- 8. Системы линейных дифференциальных уравнений 1-го порядка с постоянными коэффициентами.
 - 9. Понятия теории динамических систем.
 - 10. Устойчивость по Ляпунову и асимптотическая устойчивость.
 - 11. Первые интегралы автономной системы.
 - 12. Линейные и квазилинейные уравнения с частными производными первого порядка.

Формы промежуточного контроля

Экзамен (3–4 семестры).

Уравнения математической физики

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Уравнения математической физики» являются: фундаментальная подготовка в области уравнений в частных производных; овладение

аналитическими методами математической физики; овладение современным математическим аппаратом для дальнейшего использования в приложениях.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.13 «Уравнения математической физики» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 7 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции:

ОПК-2 Способен разрабатывать, анализировать и внедрять новые математические модели в современных естествознании, технике, экономике и управлении

Краткая характеристика дисциплины

Основные блоки, разделы, темы.

5 семестр

- 1. Понятие дифференциального уравнения с частными производными
- 2. Классификация и приведение к каноническому виду уравнений второго порядка
- 3. Вывод основных уравнений математической физики
- 4. Уравнение колебаний струны. Метод характеристик. Формула Даламбера
- 5. Задачи Коши и Гурса для уравнений гиперболического типа
- 6. Задача Коши для волнового уравнения. Формулы Пуассона и Кирхгофа. Цилиндрические волны.
- 7. Основные смешанные задачи для волнового уравнения. Теорема о единственности
- 8. Метод Фурье для свободных и вынужденных колебаний струны
- 9. Задача Штурма-Лиувилля

6 семестр

- 10. Общая схема метода Фурье в многомерных задачах
- 11. Специальные функции математической физики
- 12. Уравнения параболического типа. Основные задачи для уравнения теплопроводности. Теорема о максимуме и минимуме. Формула Пуассона
- 13. Уравнения эллиптического типа. Основные задачи для уравнений Лапласа и Пуассона. Функции Грина
- 14. Свойства гармонических функций. Теорема о максимуме и минимуме для гармонических функций
- 15. Элементы теории потенциала

Формы промежуточного контроля

3ачет – 5 семестр, экзамен – 6 семестр

Дифференциальная геометрия и топология

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Дифференциальная геометрия и топология» являются формирование математической культуры студента, фундаментальная подготовка по основным разделам дифференциальной геометрии и топологии, овладение современным математическим аппаратом для дальнейшего использования при решении теоретических и прикладных задач.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.14 «Дифференциальная геометрия и топология» относится обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 7 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины (модуля)

4 семестр

Тема 1 Теория гладких кривых

Тема 2 Теория гладких поверхностей

Тема 3 Метрические и топологические пространства

5 семестр

Тема 4 Общая топология

Тема 5 Многообразия

Тема 6 Введение в гомотопическую топологию

Формы промежуточного контроля

3ачет -4 семестр, экзамен -5 семестр.

Теория вероятностей и математическая статистика

(наименование дисциплины (модуля))

Цель освоения дисциплины (модуля).

Целями освоения дисциплины являются: знакомство с методами математического описания количественных показаний различных измерителей результатов статистически устойчивого эксперимента и анализа адекватных количественных моделей стохастических реальных процессов простейшего типа; построение и изучение вероятностно-статистических моделей случайных экспериментов, для которых не все условия их проведения известны; приобретение навыков и умения имитационного моделирования простейших ситуаций стохастического характера с использованием компьютерных технологий. Вторая часть курса осуществляет знакомство с основными математическими моделями случайных процессов и способами их моделирования и анализа, в частности, терминология и основные понятия случайных процессов, вероятностные распределения и моментные функции, процессы с независимыми приращениями, стационарные в широком смысле процессы и их корреляционные и спектральные характеристики, марковские цепи с дискретным и непрерывным временем, стохастические дифференциальные уравнения.

Место дисциплины (модуля) в структуре ОПОП.

Дисциплина Б1.О.15 «Теория вероятностей и математическая статистика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 10 зачетных единиц.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

ОПК-2 Способен разрабатывать, анализировать и внедрять новые математические модели в современных естествознании, технике, экономике и управлении

ОПК-6 Способен выдвигать гипотезы и последовательно развивать аргументацию в их защиту

Краткая характеристика дисциплины (модуля).

4 семестр

- Случайные события. Вероятностное пространство .свойства вероятностной меры. Способы задания вероятностной меры.
- Уловная вероятность. Формулы умножения, сложения, полной вероятности, Байеса. Независимые события. Примеры.
- Схема независимых испытаний Бернулли. Формула Бернулли. Теорема Пуассона. Понятие о теореме Муавра Лапласа. Применения.

- Дискретные случайные величины. Распределения: Биномиальное, Пуассоновское, геометрическое распределение, отрицательно- биномиальное.
- Общее определение случайных величин. Функция распределения случайных величин, ее свойства. Понятие о теоремах Лебега. Типы распределений. Абсолютно непрерывные с.в. Плотность распределения с.в., ее свойства. Примеры распределений: равномерное, нормальное, экспоненциальное, гамма распределение.

5 семестр

- Случайный вектор, его распределение. Свойства функции распределения случайного вектора. Типы случайных векторов. Маргинальные распределения векторов. Примеры дискретных и абсолютно непрерывных случайных векторов.
- Числовые характеристики случайных величин. Математическое ожидание, дисперсия, ковариация случайных величин и векторов. Их свойства. Примеры для стандартных распределений.
- Последовательности случайных величин, пределы и признаки сходимости.
- Законы больших чисел (теоремы Бернулли, Чебышева). Центральная предельная теорема (теорема Ляпунова, Муавра Лапласа).
- Эмпирическая функция распределения, понятие о теореме Гливенко. Выборочные моменты случайных величин.
- Оценка параметров распределения. Методы моментов и максимального правдоподобия. Качество точечных оценок .Доверительные интервалы. Качество оценок.
- Элементы теории проверки статистических гипотез. Уровень значимости. Ошибки первого и второго рода. Критерий хи квадрат Пирсона, Критерий отношения правдоподобия.

6 семестр

- Основные определения теории случайных процессов. Примеры процессов: Гальтона-Ватсона ветвящиеся процессы, вероятность вырождения, процесс восстановлния, уравнение восстановления для функции восстановления, Процесс Пуассона (неоднородный), процесс винеровский. Применения процессов.
- Классы моделей процессов. Стационарные, гауссовские, с независимыми приращениями, мартингалы, марковские процессы.
- Непрерывность и дифференцируемость траекторий случайных процессов. Критерии таких свойств. Примеры.
- Интегрирование в среднем квадратическом случайных процессов. Критерий существования интегралов от случайных процессов. Примеры применения Разложение в среднем квадр. процессов. Интегрирование по процессам с ортогональными приращениями. Спектральное представление стационарных процессов.
- Интеграл Ито, дифференциал Ито. Формула замены переменных Ито. Понятие и примеры стохастических дифференциальных уравнений Ито. Примеры применений уравнений Ито. Понятие о фильтрации Каллмана Бьюси, применение интегралов в задачах финансовой математики.
- Применения и некоторые свойства мартингалов.

Формы промежуточного контроля.

3ачет -4 семестр, экзамен -5, 6 семестры.

Теория чисел

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов теории делимости в кольце целых чисел, теории сравнений, теории цепных дробей, квадратичных вычетов, первообразных корней и индексов, о распределении простых чисел, формирование умений и навыков в решении задач из этих разделов теории чисел; развитие навыков в постановке и решении практических задач, знакомство с основными вычислительными алгоритмами теории чисел.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.16 «Теория чисел» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенций:

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины (модуля).

Основные темы:

Тема 1. Делимость в кольце целых чисел.

Тема 2. Теория сравнений.

Тема 3. Цепные дроби.

Тема 4. Квадратичные вычеты.

Тема5. Первообразные корни и индексы.

Тема 6. Распределение простых чисел.

Формы промежуточного контроля.

Экзамен – 7 семестр

Основы информатики

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Основы информатики» являются овладение основными из существующих технологий разработки программных средств, ориентированных на создание программных реализаций математических моделей различного вида и их исследование.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.17 «Основы информатики» относится обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенций:

ОПК-4 Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности

Краткая характеристика дисциплины (модуля).

Содержание дисциплины:

- Основные понятия языка программирования и среды разработки программных средств. Типы данных и операции с ними.
- Ключевые слова и операторы языка программирования С. Разработка и отладка простейших программ
- Работа с одномерными и двумерными массивами данных. Создание собственных функций для работы с массивами.
- Работа со строками символов. Использование стандартных библиотечных функций. Создание собственных функций обработки строк.
- Хранение данных в файловой системе ОС. Создание и отладка программ обработки файлов

Формы промежуточного контроля.

Зачет (1 семестр)

Языки и методы программирования

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины являются:

- 1. углубление знаний в области языков программирования С/С++
- 2. знакомство с основами объектно-ориентированного программирования на языке С++
- 3. знакомство со стандартной библиотекой шаблонов STL
- 4. изучение базовых структур данных и алгоритмов

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.18 «Языки и методы программирования» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 10 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ОПК-4 Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

ОПК-5 Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

2 семестр

Технологии программирования. Базовые концепции ООП.

Классы С++. Стандартные члены класса.

Агрегация

Разработка простейших структур данных

Перегрузка операций.

3 семестр

Связанные списки

Бинарные деревья

Наследование и полиморфизм

Шаблоны функций и классов

Стандартная библиотека шаблонов

Формы промежуточного контроля.

Зачет (2 и 3 семестры), экзамен (3 семестр).

Основы компьютерных наук

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Основы компьютерных наук» являются знакомство студентов с математическими моделями и методами, использующимися в программировании и информатике.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.19 «Основы компьютерных наук» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 10 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

УК-3 Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде

ОПК-4 Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности

Краткая характеристика дисциплины (модуля)

Основные разделы курса

5 семестр

Теория погрешностей

Теория интерполирования.

Численное интегрирование

Конечно-разностные формулы численного дифференцирования

Метод Гаусса решения СЛАУ

Метод прогонки решения СЛАУ с трехдиагональной матрицей

Метод простой итерации итерационного решения СЛАУ

6 семестр

Метод Ньютона решения нелинейного уравнения

Метод Ньютона решения системы нелинейных уравнений

Метод Эйлера решения задачи Коши для ОДУ первого порядка.

Семейство явных двухэтапных методов Рунге-Кутта

Метод дифференциальной прогонки решения краевых задач для ОДУ второго порядка

Метод конечных разностей для уравнений в частных производных

Спектральный признак устойчивости Неймана

7 семестр

Основы языка программирования Racket и функционального программирования

Использование рекурсии при реализации алгоритмов

Построение абстракций при помощи данных

Макропрограммирование в языке Racket

8 семестр

Введение, основная методология системы интерактивных доказательств Соф

Работа с логическими связками

Теория отношений

Средства функционального программирования в Соф

Доказательства по индукции

Верификация функциональных программ

Формы промежуточного контроля.

Зачет (5-8 семестры).

Базы данных

(наименование дисциплины (модуля))

Цели освоения дисциплины

Цель данного курса состоит в формировании концептуальных представления об основных принципах построения баз данных, систем управления базами данных; о математических моделях, описывающих базу данных; о принципах проектирования баз данных; а также анализе основных технологий реализации баз данных.

Главной задачей изучения дисциплины является представление слушателю фундаментальных понятий, лежащих в основе баз данных и систем управления базами данных, и иллюстрация способов реализации соответствующих понятий в конкретных программных системах.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.20 «Базы данных» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 3 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

ОПК-4 Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 1. Введение в базы данных. Общая характеристика основных понятий обработки данных.
- 2. Концептуальное моделирование базы данных.
- 3. Модели данных СУБД как инструмент представления концептуальной модели.
- 4. Реляционная модель данных.
- 5. Анализ современных технологий реализации баз данных. Языки и стандарты.
- 6. Современные тенденции развития баз данных.

Формы промежуточного контроля.

Зачет – 4 семестр

Физическая культура и спорт

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Физическая культура и спорт» является формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.21 «Физическая культура и спорт» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-7 Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 7. Физическая культура в общекультурной и профессиональной подготовке студентов.
- 8. Социально-биологические основы физической культуры.
- 9. Основы здорового образа жизни студента.
- 10. Психофизические основы учебного труда и интеллектуальной деятельности. Средства физической культуры в регулировании работоспособности.
- 11. Общая физическая и специальная подготовка в системе физического воспитания.
- 12. Основы методики самостоятельных занятий физическими упражнениями.
- 13. Спорт. Индивидуальный выбор видов спорта или систем физических упражнений. Особенности занятий избранным видом спорта или системой физических упражнений.
- 14. Самоконтроль занимающихся физическими упражнениями и спортом.
- 15. Профессионально-прикладная физическая подготовка студентов.
- 16. Физическая культура в профессиональной деятельности бакалавра.

Формы промежуточного контроля

Зачет — 1 семестр.

Комбинаторика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Комбинаторика является содержательно и технически очень сложной дисциплиной — недаром Г. Лейбниц называл комбинаторику искусством, а курс короткий, поэтому основная его цель — дать студентам общее представление о задачах, методах и результатах комбинаторики, а также дать основные сведения по элементарной комбинаторике, необходимые для освоения алгебры, анализа и теории вероятностей.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.22 «Комбинаторика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

ПК-3 Способен активно участвовать в исследовании новых математических моделей в естественных науках

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

- 1. Классические комбинаторные объекты.
- 2. Соединения с повторениями.
- 3. Разбиения.
- 4. Производящие функции.
- 5. Производящие функции для классических последовательностей.

Формы промежуточного контроля.

Зачёт – 4 семестр

Действительный анализ

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Действительный анализ» является изучение основ действительного анализа, постановка основных задач действительного анализа, изучение различных методов их решения, а также обучение навыкам практического применения указанных методов для решения конкретных прикладных задач, развитие творческого мышления студентов и пробуждение у них интереса к доказательству новых теорем действительного анализа. В частности, освоение указанной дисциплины предполагает достаточно детальное изучение свойств множеств, мощности, свойств счетно-аддитивных мер, измеримых функций, интеграла Лебега.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.23 «Действительный анализ» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 3 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-4 Способен собирать, обрабатывать, анализировать и обобщать передовой отечественный и международный опыт в математической и информационной области исследований

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

Тема 1. Возникновение действительного и функционального анализа как самостоятельного раздела математики; современное развитие функционального анализа и его связь с другими областями математики.

Тема 2. Множества, алгебра множеств. Счетные множества и множества мощности континуума.

Тема 3. Мера и интеграл Лебега: построение меры Лебега на прямой.

- Тема 4. Общее понятие аддитивной меры; лебеговское продолжение меры.
- Тема 5. Измеримые функции их свойства; определение интеграла Лебега; класс суммируемых функций.
- Тема 6. Предельный переход под знаком интеграла; связь интеграла Лебега с интегралом Римана; интеграл Стилтьеса.
- Тема 7. Теорема Радона Никодима; прямое произведение мер и теорема Фубини.
- Тема 8. Пространства L1, Lp (p>1); неравенства Гельдера и Минковского.

Формы промежуточного контроля.

Экзамен – 4 семестр

Функциональный анализ

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Функциональный анализ» является изучение основ функционального анализа, постановка основных задач функционального анализа, изучение различных методов их решения, а также обучение навыкам практического применения указанных методов для решения конкретных прикладных задач, развитие творческого мышления студентов и пробуждение у них интереса к доказательству новых теорем функционального анализа. В частности, освоение указанной дисциплины предполагает достаточно детальное изучение свойств метрических, гильбертовых, банаховых, топологических пространств; линейных функционалов и операторов, действующих в этих пространствах.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.24 «Функциональный анализ» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-4 Способен собирать, обрабатывать, анализировать и обобщать передовой отечественный и международный опыт в математической и информационной области исследований

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

- Тема 1. Метрические пространства; открытые и замкнутые множества.
- Тема 2. Компактные множества в метрических пространствах; критерий Хаусдорфа.
- Тема 3. Полнота и пополнение; теорема о стягивающих шарах; принцип сжимающих отображений.
- Тема 4. Топологические пространства; примеры. Определение линейного нормированного пространства; примеры норм; банаховы пространства.
- Тема 5. Скалярное произведение; неравенство Коши Буняковского Шварца.
- Тема 6. Ортогональные системы; неравенство Бесселя; базисы и гильбертова размерность; теорема об изоморфизме, ортогональное дополнение.
- Тема 7. Сопряженное пространство, его полнота.
- Тема 8. Теорема Хана Банаха о продолжении линейного функционала.
- Тема 9. Общий вид линейных функционалов в некоторых банаховых пространствах.
- Тема 10. Общий вид линейного функционала на гильбертовом пространстве.
- Тема 11. Линейные операторы; норма оператора; сопряженный оператор.
- Тема 12. Самосопряженные (эрмитовы) и унитарные операторы; ортопроекторы.
- Тема 13. Принцип равномерной ограниченности; обратный оператор.
- Тема 14. Спектр и резольвента линейного оператора.

Формы промежуточного контроля.

Экзамен, зачет (6 семестр).

Комплексный анализ

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Комплексный анализ» являются развитие в комплексной области известных из действительного анализа понятий и операций: предела, производной, интеграла и др. Обучение методам выхода в область комплексных чисел при интегрировании элементарных функций, решении дифференциальных уравнений и т. д. Применение теории функций комплексной переменной для решения задач естественных наук.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.25 «Комплексный анализ» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-4 Способен собирать, обрабатывать, анализировать и обобщать передовой отечественный и международный опыт в математической и информационной области исследований

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

Тема 1 Введение. Комплексная плоскость

Тема 2 Функции комплексного переменного (ФКП). Функции аналитические и гармонические

Тема 3 Конформные отображения

Тема 4 Интеграл

Тема 5 Ряды

Тема 6 Ряды Лорана. Особые точки

Тема 7 Теория вычетов

Тема 8 Приложение теории вычетов к вычислению некоторых определенных интегралов

Формы промежуточного контроля.

Экзамен (5 семестр)

Теоретическая механика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Теоретическая механика» являются:

- ознакомление студентов с основными принципами классической и аналитической механики;
- сформировать у студентов представление о различных подходах к построению математических моделей физических процессов и явлений;
- сформировать у студентов представление о методах исследования динамических систем.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.26 «Теоретическая механика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 8 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

ПК-3 Способен активно участвовать в исследовании новых математических моделей в естественных науках

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Кинематика материальной точки и твердого тела
- Основные теоремы динамики системы
- Динамика вращательного движения твердого тела
- Общее уравнение динамики. Принцип виртуальных перемещений
- Уравнения Лагранжа в независимых переменных
- Свободные колебания системы
- Устойчивсть движения
- Механика Гамильтона
- Вариационные интегральные принципы механики

Формы промежуточного контроля

Зачет — 3 семестр, экзамен — 4 семестр

Физика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Физика» являются:

- изучение и практическое освоение основных принципов и законов физики, а также вытекающих из них теоретических и практических следствий;
- приобретение навыков математического моделирования различных процессов и закономерностей реального мира;
- воспитание у студентов естественно-научной культуры;
- формирование способностей использовать базовые знания естественных наук.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.27 «Физика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 7 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

ПК-3 Способен активно участвовать в исследовании новых математических моделей в естественных науках

Краткая характеристика дисциплины (модуля)

Основные разделы курса

6 семестр

- Ведение.
- Динамика материальной точки.
- Законы сохранения.
- Неинерциальные системы отсчета.
- Гравитационное поле.
- Элементы специальной теории относительности.
- Электростатика.
- Движение заряженных тел в электромагнитных полях.

7 семестр

- Электрическое поле в присутствии проводников.
- Электрическое поле в присутствии диэлектриков.
- Стационарный электрический ток.

- Постоянное магнитное поле.
- Магнитное поле в присутствии магнетиков.
- Электромагнитная индукция.
- Уравнения Максвелла.

Формы промежуточного контроля

Зачет — 6 семестр, экзамен — 7 семестр.

Компьютерная геометрия и геометрическое моделирование

(наименование дисциплины (модуля))

Цели освоения дисциплины

- Овладение математическими основами теории построения изображений объектов средствами компьютерной техники, графической библиотеки языка программирования Java, а также алгоритмов и структур данных, работающих с геометрическими объектами.
- Получение практических навыков написания программ, использующих компьютерную графику и геометрическое моделирование.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.28 «Компьютерная геометрия и геометрическое моделирование» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 5 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

ПК-4 Способен собирать, обрабатывать, анализировать и обобщать передовой отечественный и международный опыт в математической и информационной области исследований

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 1. Линейные, аффинные и проективные отображения.
- 2. Объектно-ориентированное программирование в Java. Пиксельная и векторная графика в Java.
- 3. Кривые Безье, полиномы Бернштейна, кубические сплайны.
- 4. Рациональные кривые Безье, В-сплайны, неравномерные рациональные В-сплайны (NURBS).
- 5. Триангуляция Делоне и диаграммы Вороного.

Формы промежуточного контроля.

Зачет, экзамен (5 семестр).

Численные методы

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено на освоение численных методов решения математических задач и алгоритмов их реализации.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.29 «Численные методы» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 7 зачетных единиц.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

ПК-4 Способен собирать, обрабатывать, анализировать и обобщать передовой отечественный и международный опыт в математической и информационной области исследований

Краткая характеристика дисциплины (модуля)

Основные разделы курса

5 семестр

Теория погрешностей.

Теория интерполирования.

Численное дифференцирование.

Численное интегрирование.

Численное решение систем линейных алгебраических уравнений.

6 семестр

Численное решение нелинейных уравнений и их систем.

Численное решение задач для обыкновенных дифференциальных уравнений первого порядка и их систем.

Формы промежуточного контроля

Зачет — 5 семестр, экзамен — 6 семестр.

Математические методы нелинейной динамики

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено на профессиональную подготовку в области динамических систем и математической теории колебаний; знакомство с современными задачами нелинейной динамики (теории колебаний) и методами их исследования.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.30 «Математические методы нелинейной динамики» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-2 Способен выполнять фундаментальные и прикладные естественнонаучные работы поискового и теоретического и характера

ПК-3 Способен активно участвовать в исследовании новых математических моделей в естественных науках

Краткая характеристика дисциплины.

- Тема1. Введение. Динамические системы, основные понятия.
- Тема 2. Качественные методы анализа двумерных динамических систем.
- Тема 3. Элементы теории бифуркаций двумерных ДС.
- Тема 4. Консервативные системы с одной степенью свободы.
- Тема 5. Консервативные трехмерные автономные системы.
- Тема 6. Многомерные системы Гамильтона.
- Тема 7. Квазиконсервативные автономные системы.
- Тема 8. Неавтономные периодические по времени системы

Формы промежуточного контроля.

Экзамен – 7 семестр

Методы оптимизации

(наименование дисциплины (модуля))

Цель освоения дисциплины. Целью освоения дисциплины «Методы оптимизации» является знакомство с теорией математического программирования, основными идеями и конструкциями современных численных методов решения конечномерных задач

оптимизации, классическим вариационным исчислением и современными подходами к решению бесконечномерных оптимизационных задач.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.31 «Методы оптимизации» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 7 зачетных единиц.

Требования к результатам освоения дисциплины (формируемые компетенции).

ПК-2 Способен выполнять фундаментальные и прикладные естественнонаучные работы поискового и теоретического и характера

ПК-3 Способен активно участвовать в исследовании новых математических моделей в естественных науках

Краткая характеристика дисциплины.

7 семестр

- Тема 1. Элементарный выпуклый анализ
- Тема 2. Гладкие конечномерные задачи на экстремум.
- Тема 3. Выпуклые конечномерные задачи на экстремум.
- Тема 4. Численные методы конечномерной оптимизации.

8 семестр

- Тема 5. Простейшая задача вариационного исчисления и ее обобщения.
- Тема 6. Условия второго порядка в вариационном исчислении.
- Тема 7. Принцип Лагранжа в вариационном исчислении.
- Тема 8. Понятие о математической теории оптимального управления.

Формы промежуточного контроля.

3ачет -7 семестр. Экзамен -8 семестр.

Психология и педагогика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Психология и педагогика» является обеспечение студентов психолого-педагогическими знаниями, необходимыми для повышения общей и профессиональной компетентности современного специалиста, его конкурентоспособности, формирования психолого-педагогической культуры, самостоятельности и творческого подхода в профессиональной деятельности.

Место дисциплины в структуре ОПОП

Дисциплина Б1.О.32 «Психология и педагогика» относится к обязательной части блока 1 «Дисциплины (модули)».

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-3 Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде

ПК-1 На основе полученного фундаментального образования способен преподавать математику и информатику по программам общего, профессионального и дополнительного профессионального образования

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Тема 1. Психология, как наука; место психологии в системе наук. Система педагогического знания.
- Тема 2. Отрасли и этапы развития психологии. Методология психологии и педагогики.
- Тема 3. Основные школы в психологии

- Тема 4. Познавательные процессы
- Тема 5. Психические процессы
- Тема 6. Психические состояния
- Тема 7. Психические свойства.
- Тема 8. Общение и деятельность
- Тема 10. Педагогические категории, педагогический процесс, методы педагогического воздействия
- Тема 11. Психология и педагогика при преподавании математики

Формы промежуточного контроля

Зачет — 4 семестр.

Практикум по математическому анализу

(наименование дисциплины (модуля))

Цели освоения дисциплины

- ознакомление с фундаментальными методами исследования переменных величин посредством анализа бесконечно малых, основу которого составляет теория дифференциального и интегрального исчисления;
- приобретение навыков математического моделирования различных процессов и закономерностей реального мира;
- подготовка фундаментальной базы для изучения дисциплин: «Дополнительные главы математического анализа», «Дифференциальные уравнения», «Уравнения математической физики», «Теория вероятностей и математическая статистика», «Методы оптимизации», «Вычислительные методы и функциональный анализ», «Математические модели естествознания»; «Численные методы» и др.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.07 «Математический анализ» относится к обязательной части блока 1 «Дисциплины (модули)»

Трудоемкость дисциплины составляет 4 зачетных единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности

Краткая характеристика дисциплины (модуля)

Основные разделы курса

1 семестр

- 1. Введение
- 2. Вешественные числа
- 3. 3 Числовые послеловательности
- 4. Предел функции.
- 5. Непрерывные функции
- 6. Производная функции
- 7. Основные теоремы о дифференцируемых функциях и их приложения

2 семестр

- 1. Неопределенный интеграл:
- 2. Определенный интеграл
- 3. Приложения определенного интеграла
- 4. Функции многих переменных и пределы
- 5. Непрерывные функции многих переменных
- 6. Дифференцирование функции многих переменных

- 7. Неявно-заданные функции:
- 8. Экстремумы функций многих переменных

3 семестр

- 1. Числовые ряды:
- 2. Функциональные последовательности и ряды
- 3. Степенные ряды
- 4. Несобственные интегралы:
- 5. Определенные интегралы
- 6. Несобственные интегралы
- 7. Ряды Фурье:

4 семестр

- 1. Кратные интегралы
- 2. Криволинейные интегралы
- 3. Поверхностные интегралы
- 4. Теория поля (Векторный анализ)

Формы промежуточного контроля.

Зачет (1–2 семестры)

Введение в проектную деятельность

(наименование дисциплины (модуля))

Цель освоения дисциплины

- ознакомление с философскими основаниями проектной деятельности;
- командная работа в проекте;
- развитие эмоционального интеллекта;
- ролевые игры: внимание, понимание потребностей других;
- командная работа.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.34 «Введение в проектную деятельность» относится к обязательной части ОПОП, формируемой участниками образовательных отношений.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-3 Способен осуществлять социальное взаимодействие и реализовывать свою роль в команде.

Основные разделы курса.

- 1. Понятие социальных технологий и их основные типы. Определение проектирования и проектной деятельности.
- 2. Онтологические основания, когнитивная база и социокультурные предпосылки развития социальных технологий.
- 3. Виды и структура проектов.
- 4. Социальные технологии и проектирование в практиках современного общества.
- 5. Развитие эмоционального интеллекта.
- 6. Коммуникация: управление эмоциями/понимание эмоций.
- 7. Ролевые игры: внимание, понимание потребностей других.
- 8. Командный креатив

Формы промежуточного контроля

Зачет — 1 семестр.

Математическая логика

(наименование дисциплины (модуля))

Цель освоения дисциплины

Главной целью освоения дисциплины (модуля) "Математическая логика" является формирование логической и математической культуры студента, базовая подготовка в области математической логики. В процессе обучения требуется дать студентам запас базовых знаний по основным разделам математической логики, сформировать знания, умения и навыки использования основных понятий математической логики.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.О.35 «Математическая логика» относится к обязательной части ООП бакалавриата по направлению подготовки «Математика». Преподаётся в седьмом семестре.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

ОПК-1: Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Основные разделы курса.

- 1. Элементы логического языка первого порядка.
- 2. Логический вывод.
- 3. Канонические формы предложений в логике первого порядка.
- 4. Приближенное выражение свойств структур в логике первого порядка.
- 5. Приложения логического языка первого порядка к моделированию математических теорий.
- 6. Алгоритмическая разрешимость теорий. Метод элиминации кванторов.
- 7. Изучение моделей вычислений на примере машины Тьюринга.

Формы промежуточного контроля

Экзамен — 7 семестр.

Физическая культура и спорт (элективный курс)

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Физическая культура и спорт (элективный курс)» является формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.01 «Физическая культура и спорт (элективный курс)» относится к обязательной части ОПОП, формируемой участниками образовательных отношений

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-7 Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 6. Физическая культура в общекультурной и профессиональной подготовке студентов.
- 7. Социально-биологические основы физической культуры.

- 8. Основы здорового образа жизни студента.
- 9. Психофизические основы учебного труда и интеллектуальной деятельности. Средства физической культуры в регулировании работоспособности.
- 10. Общая физическая и специальная подготовка в системе физического воспитания.
- 11. Основы методики самостоятельных занятий физическими упражнениями.
- 12. Спорт. Индивидуальный выбор видов спорта или систем физических упражнений. Особенности занятий избранным видом спорта или системой физических упражнений.
- 13. Самоконтроль занимающихся физическими упражнениями и спортом.
- 14. Профессионально-прикладная физическая подготовка студентов.
- 15. Физическая культура в профессиональной деятельности бакалавра.

Формы промежуточного контроля

Зачет — 2, 3, 4 семестры.

Проектная деятельность в сфере математики

(наименование дисциплины (модуля))

Цель освоения дисциплины.

формирование целостного представления о проектной деятельности, ее реализации в учебной и внеурочной деятельности, формирование практических навыков по разработке и использованию проектов в образовательном процессе в предметной области «Математика».

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.02 Проектная деятельность в сфере математики относится к части ООП направления подготовки 01.03.01 Математика, формируемой участниками образовательных отношений.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Основные разделы курса.

- 1.Понятие проект и процесс
- 2. Управление проектом, основные направления
- 3. Структурная декомпозиция работ
- 4. Планирование
- 5. Оптимизация процессов

Формы промежуточного контроля

Зачет — 6 семестр.

Основные структуры алгебры

(наименование дисциплины (модуля))

Цель освоения дисциплины (модуля).

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов из теории алгебраических систем.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.01.01 «Основные структуры алгебры» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

- *Тема 1.* Элементы коммутативной алгебры
- Тема 2. Расширения полей
- *Тема 3*. Введение в теорию модулей

Формы промежуточного контроля.

Экзамен – 5 семестр.

Качественная теория динамических систем

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Качественная теория динамических систем» являются:

- 1. фундаментальная подготовка по качественной теории и теории бифуркаций двумерных динамических систем;
- 2. изучение методов и приемов качественного исследования двумерных динамических систем;
 - 3. овладение современным математическим аппаратом теории бифуркаций;
- 4. овладение современными методами компьютерной математики при исследовании двумерных динамических систем.

Место дисциплины в структуре ОПОП

Дисциплина Б1.В.ДВ.01.02 «Качественная теория динамических систем» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Тема 1. Динамические системы на плоскости: траектории, особые точки, теория индексов, предельные циклы, сфера Пуанкаре.
- Тема 2. Бифуркации состояний равновесия. Грубые системы. Бифуркация рождения предельных циклов.
- Тема 3. Динамические системы, зависящие от параметров. Гамильтоновы системы.
 Консервативные системы

Формы промежуточного контроля

Экзамен — 5 семестр.

Система корней

(наименование дисциплины (модуля))

Цель освоения дисциплины (модуля).

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов из теории алгебраических систем.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.02.01 «Система корней» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

Тема 1. Группы Кокстера.

Тема2.Классификаци систем корней. Схемы Дынкина. Группа Вейля.

Тема 3. Построение систем корней

Формы промежуточного контроля.

3ачет -5 семестр.

Алгебра: кольца и модули

(наименование дисциплины (модуля))

Цель освоения дисциплины (модуля).

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов из теории алгебраических систем.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.02.02 «Алгебра: кольца и модули» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (модуля) (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

- 1. Кольца.
- 2. Модули.

Формы промежуточного контроля.

Зачет – 5 семестр.

Топология многообразий

(наименование дисциплины (модуля))

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.03.01 «Топология многообразий» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

Тема 1. Фундаментальная группа и накрытия

Тема 2. Двумерные многообразия

Тема3. Дифференциальные формы на многообразиях

Формы промежуточного контроля.

Зачет (6 семестр).

Фракталы и хаос в динамических системах

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено:

- 1) на профессиональную подготовку в области динамических систем и знакомство с фрактальной геометрией, с конструктивными и динамическими фракталами;
- 2) на то, чтобы показать, что фракталы являются аттракторами динамических систем, а движение на аттракторах хаотическое.

Место дисциплины в структуре ОПОП

Дисциплина Б1.В.ДВ.03.02 «Фракталы и хаос в динамических системах» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины.

- Тема 1. Конструктивные фракталы: фракталы и системы счисления; самоподобие; фрактальная размерность; фракталы Кантора, Коха, Минковского, Серпинского; общая схема построения конструктивных фракталов; спирали, деревья, звезды; анализ конструктивных фракталов; системы итерированных функций (СИФ); случайность во фракталах.
- Тема 2. Динамические фракталы: модель ограниченного роста популяции; одномерные комплексные эндоморфизмы; множества Жулиа и Фату; фракталы Жулиа для квадратичных отображений и алгоритмы построения. Фрактал Мандельброта, фракталы Ньютона.
- Тема 3. Фракталы и хаос. Определение хаоса по Девани; примеры хаотических отображений; хаотическое поведение на аттракторе СИФ; хаос фракталов Жулиа; странный аттрактор в отображении Эно.

Формы промежуточного контроля.

Зачет – 6 семестр.

Группы и алгебры Ли

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов теории групп и алгебр Ли.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.04.01 «Группы и алгебры Ли» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

Основные темы:

Тема 1. Гладкие многообразия

Тема 2. Группы Ли

Тема 3. Алгебры Ли

Формы промежуточного контроля.

Зачет – 6 семестр.

Операционное исчисление

(наименование дисциплины (модуля))

Цель освоения дисциплины

«Операционное исчисление» является: знакомство с основными проблемами операционного исчисления и некоторыми подходами к их решению, а также овладение основными инструментами исследования преобразования Лапласа в связи решением многих прикладных задач: изучение свойств оригинала и изображения (дифференцирование, интегрирование, смещение, свертывание); переход к пределу в операционных соотношениях; применение операционного исчисления в теории электрических цепей; приложения операционного исчисления в задачах динамики; колебания непрерывных механических систем.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.04.02 «Операционное исчисление» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 2 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-6 Способен составлять научные обзоры, рефераты и отчеты по тематике проводимых исследований, а также подготовить научную публикацию

Краткая характеристика дисциплины (модуля).

Тема 1 Ввеление

Тема 2 Оригинал, изображение и их свойства.

Тема 3 Дифференцирование и интегрирование оригинала и изображения

Тема 4 Восстановление оригинала по изображению

Тема 5 Преобразование Лапласа в теории электрических цепей.

Тема 6 Задачи динамики.

Тема 7 Колебания непрерывных механических систем.

Формы промежуточного контроля.

Зачет – 6 семестр.

Комплексный анализ динамических систем

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целью освоения дисциплины «Комплексный анализ динамических систем» является возможность эффективного применения современных достижений комплексной динамики в теории динамических систем. В частности, освоение указанной дисциплины предполагает достаточно детальное изучение основ топологии, теории функций комплексного переменного и динамических систем с последующим применением этих знаний к решению современных задач качественной теории дифференциальных уравнений и теории бифуркаций..

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.05.01 «Комплексный анализ динамических систем» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-5 Обладает навыками преподавания математики и информатики в средней школе, специальных учебных заведениях на основе полученного фундаментального образования

Краткая характеристика дисциплины (модуля).

- Тема 1 Введение в дисциплину.
- Тема 2 Периодические точки и устойчивые множества. Графический анализ
- Тема 3 Теорема Шарковского
- Тема 4 Параметрические семейства функций и бифуркации
- Тема 5 Логистическая функция
- Тема 6 Метод Ньютона
- Тема 7 Динамика комплексных функций
- Тема 8 Квадратичное семейство и множество Мандельброта
- Тема 9 Локальная геометрия множества Фату

Формы промежуточного контроля.

Экзамен — 8 семестр

Теория представлений

(наименование дисциплины (модуля))

Цель освоения дисциплины

Содержание дисциплины направлено на освоение фундаментальных понятий и результатов теории представлений групп: разложимые, неразложимые, неприводимые представления, полная приводимость представлений конечной группы над полем, характеристика которого не делит порядок группы, теория характеров, представления абелевых групп. формирование умений и навыков в решении задач из этих разделов; развитие навыков в постановке и решении практических задач.

Место дисциплины в структуре ОПОП

Дисциплина Б1.В.ДВ.05.02 «Теория представлений» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-5 Обладает навыками преподавания математики и информатики в средней школе, специальных учебных заведениях на основе полученного фундаментального образования

Краткая характеристика дисциплины (модуля).

Основные темы:

- 1. Основные понятия теории представлений.
- 2. Характеры комплексных представлений
- 3. Представления специальных классов групп.

Формы промежуточного контроля.

Экзамен – 8 семестр

Дискретные динамические системы

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Дискретные динамические системы» являются:

- 1. создать фундаментальный аппарат для решения задач профессиональной подготовки будущего математика специалиста по дифференциальным уравнениям и динамическим системам:
- 2. сформировать важнейшие навыки по теории дискретных динамических систем, необходимые в профессиональной деятельности;

3. создать фундаментальный аппарат для решения задач, возникающих в профессиональной деятельности математика — специалиста по дифференциальным уравнениям и динамическим системам.

Место дисциплины в структуре ОПОП

Дисциплина Б1.В.ДВ.06.01 «Дискретные динамические системы» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

ПК-5 Обладает навыками преподавания математики и информатики в средней школе, специальных учебных заведениях на основе полученного фундаментального образования

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 1.Потоки и диффеоморфизмы. Конструкция надстройки. Определение дискретной динамической системы. Примеры.
- 2. Типичные свойства дискретных динамических систем. Диффеоморфизмы окружности Морса-Смейла.
- 3. Топологическая сопряженность. Инварианты топологической сопряженности.
- 4. Классическая теория гомеоморфизмов окружности. Число вращения.

Формы промежуточного контроля

Зачет — 8 семестр.

Вещественные алгебраические многообразия

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Вещественные алгебраические многообразия»

- формирование у студентов представления о геометрических методах теории управления, основанных на использовании аппарата вещественных алгебраических многообразий;
- овладение математическим аппаратом, предназначенным для решения задачи управляемости и оптимального управления с использованием формализма вещественных алгебраических многообразий;
- формирование у студентов готовности применять геометрические методы для исследования вещественных алгебраических многообразий.

Место дисциплины в структуре ОПОП.

Дисциплина Б1.В.ДВ.06.02 «Вещественные алгебраические многообразия» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений.

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции).

Формируемые компетенции:

ПК-5 Обладает навыками преподавания математики и информатики в средней школе, специальных учебных заведениях на основе полученного фундаментального образования

Краткая характеристика дисциплины (модуля).

Основные блоки, разделы, темы.

- Тема 1. Плоские вещественные алгебраические кривые.
- Тема 2. Метод малого параметра. Кривые Харнака.
- Тема 3. Комплексификация кривой.
- Тема 4. Метод Виро построения вещественных гиперповерхностей.
- Тема 5. Построение кривых методом Оревкова.

Формы промежуточного контроля.

3ачет -8 семестр.

Проектирование Startup

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины являются:

изучение методов управления бизнесмоделированием и стартапом проекта, используемых в практической деятельности отечественных и зарубежных организаций; изучение технологий бизнес-моделирование и принятия эффективных управленческих решений в бизнес-процессах Startup проекта; приобретение практических навыков и умений самостоятельно разрабатывать и принимать управленческие решения в сфере бизнесмоделирования и Startup проекта.

Место дисциплины в структуре ОПОП

Дисциплина ФТД.01 «Проектирование Startup» относится к факультативной части ОПОП бакалавриата по направлению подготовки «Математика» (общий профиль).

Трудоемкость дисциплины составляет 1 зачетная единица.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-2. Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений.

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 1. Введение в инновационное развитие.
- 2. Бизнес-идея, бизнес-модель, бизнес-план.
- 3. Создание и развитие стартапа.
- 4. Оценка инвестиционной привлекательности проектаю
- 5. Итоговая презентация группового проекта (питч-сессия).

Формы промежуточного контроля

Зачет — 7 семестр.

Эффективные алгоритмы и структуры данных

(наименование дисциплины (модуля))

Цель освоения дисциплины

Целями освоения дисциплины «Эффективные алгоритмы и структуры данных» являются изучение различных абстрактных структур данных и алгоритмов решения распространенных классов задач, являющихся фундаментом современного программирования, а также изучение современных методов исследования алгоритмов и оценки их алгоритмической сложности как части процесса компьютерного решения задач.

Место дисциплины в структуре ОПОП

Дисциплина ФТД.02 «Эффективные алгоритмы и структуры данных» относится к факультативной части ОПОП бакалавриата по направлению подготовки «Математика» (общий профиль).

Трудоемкость дисциплины составляет 4 зачетные единицы.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

УК-1. Способен осуществлять поиск, критический анализ и синтез информации, при-менять системный подход для решения поставленных задач.

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- Тема 1. Оценки сложности алгоритмов
- Тема 2. Амортизационный анализ
- Тема 3. D-кучи и их приложения
- Тема 4. Приложения D-куч: сортировки и нахождение выпуклой оболочки
- Тема 5. Биноминальные кучи
- Тема 6. Левосторонние кучи
- Тема 7. Самоорганизующиеся кучи
- Тема 8. Задача о кратчайших путях, алгоритмы ее решения и их эффективные реализации
- Тема 9. Методы анализа сложности алгоритмов
- Тема 10. Приоритетные очереди и их приложения
- Тема 11. Разделенные множества и их приложения
- Тема 12. Поисковые деревья и их приложения
- Тема 13. Строковые алгоритмы.

Формы промежуточного контроля

Зачет — 1, 2 семестр.

Введение в анализ данных и искусственный интеллект

(наименование дисциплины (модуля))

Цель освоения дисциплины

Цель преподавания дисциплины «Введение в анализ данных и искусственный интеллект» состоит в формировании у студентов, получающих квалификацию бакалавра, знаний в области искусственного интеллекта (ИИ), а также получении навыков проектирования систем искусственного интеллекта и работы с инструментальными средствами реализации принципов искусственного интеллекта. Задачами дисциплины являются: формирование теоретических знаний в области ИИ; развитие навыков решения прикладных задач в области ИИ; формирование способностей для самостоятельной разработки алгоритмов решения задач и их анализа.

Место дисциплины в структуре ОПОП

Дисциплина ФТД.03 «Введение в анализ данных и искусственный интеллект» относится к факультативной части ОПОП бакалавриата по направлению подготовки «Математика» (общий профиль).

Трудоемкость дисциплины составляет 1 зачетная единица.

Требования к результатам освоения дисциплины (компетенции)

Формируемые компетенции

ОПК-2. Способен разрабатывать, анализировать и внедрять новые математические модели в современных естествознании, технике, экономике и управлении.

Краткая характеристика дисциплины (модуля)

Основные разделы курса

- 1. Постановки и примеры задач.
- 2. Введение в язык Python.
- 3. Описательная статистика и разведочный анализ данных.
- 4. Задачи классификации и регрессии.
- 5. Задачи обучения без учителя.

Формы промежуточного контроля

Зачет — 6 семестр.