МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт экономики и предпринимательства

(факультет / институт / филиал)

УТВЕРЖДЕНО решением ученого совета ННГУ протокол от «16» июня 2021г. № 8

Рабочая программа дисциплины

Математика

(наименование дисциплины (модуля))

Уровень высшего образования специалитет

(бакалавриат / магистратура / специалитет)

Направление подготовки / специальность 38.05.02 Таможенное дело

(указывается код и наименование направления подготовки / специальности)

Направленность образовательной программы Таможенные операции и таможенный контроль

(указывается профиль / магистерская программа / специализация)

Форма обучения очная, заочная

(очная / очно-заочная / заочная)

Нижний Новгород

2021 год

1. Место дисциплины в структуре ООП

Дисциплина Б1.О.13 "Математика" относится к базовой части Блока 1 «Дисциплины, модули» ОПОП по специальности 38.05.02 Таможенное дело. Дисциплина обязательна для освоения в 1 и 2 семестрах (очная форма), на 1 курсе (1,2,3 сессии) (заочная форма). Дисциплина "Математика" базируется на знаниях, полученных студентами в процессе освоения школьной программы по предмету «Математика». Дисциплина «Математика» имеет логические и методологические последующие связи с дисциплинами: Экономика организации, Статистика, Бухгалтерский учет, Маркетинг, Логистика, Менеджмент, Рекламная деятельность, Организация, технология и проектирование предприятий и Информационные технологии в профессиональной деятельности.

Целями освоения дисциплины являются:

- обучить студентов основам теоретической и практической математики
- освоить необходимый математический аппарат
- научить студентов анализировать и обобщать информацию, делать выводы
- обучить студентов логически верно, аргументировано и ясно строить устную и письменную речь

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

	Планируемые результаты обучения по дисциплине (модулю), в соответствии с индикатором достижения компетенции					
Формируемые компетенции (код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора)	Результаты обучения по дисциплине				
ОПК-2		Знать:				
	ОПК-2.1.	1.Фундаментальные				
Способен осуществлять сбор, обработку, анализ	Осуществляет сбор, обработку, анализ данных для решения профессиональных	разделы математики				
данных для решения	задач на основе информационной и	необходимые для лог-				
профессиональных задач, информирования органов государственной власти и общества на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных	библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности.	иического осмысления и обработки информации в профессиональной деятельности. 2. Методы обработки и анализа статистических данных.				
требований информации-		Уметь:				
		1.Использовать				

онной безопасности/		математический язык, математическую символику и математические методы для решения практических задач связанных с профессииональной деятельностью. Владеть: Математическими методами решения типовых профессиональных задач.
	ОПК-2.2 Обрабатывает и анализирует данные с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности для последующего предоставления результатов органам государственной власти и обществу/	3нать: 1.Фундаментальные разделы математики необходимые для логического осмыс- ления и обработки информации в профес- сиональной деятель- ности. 2. Методы обработки и анализа статистичес- ких данных. Уметь: 1. Использовать математический язык , математическую симво- лику и математические методы при построении организационно-управ- ленческих моделей для решения практических задач управления.

	Владеть: Математическими
	методами решения типо-
	вых задач связанных с
	профессиональной дея-
	тельностью.

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная форма обучения	заочная форма обучения
Общая трудоемкость, ч	324	324
Часов по учебному плану, <i>ч</i>	324	324
в том числе		
аудиторные занятия (контактная		
работа):		
- занятия лекционного типа, <i>ч</i>	64	12
- занятия семинарского типа, <i>ч</i>	64	16
(практические занятия /		
лабораторные работы)		
самостоятельная работа	121	280
КСР	3	3
Промежуточная аттестация –	72	13
экзамен/зачет		

3.2. Содержание дисциплины

		в том числе		
	Всего	взаимодействии с п	абота (работа во реподавателем), часы в них	работа сы
Наименование и краткое содержание разделов и тем дисциплины	(часы)	Занятия лекционного типа	Занятия сесеминарского типа	Самостоятельная ра обучающегося, часы

							1	
	ая	Заочная	ая	Заочная	ая	Заочная	ая	Заочная
	Очная	3ao •	Очная	3ao •	Очная	3ao •	Очная	3ao •
Раздел 1. Дифференциально				1,		1,		1 /
Тема 1 Введение.	4	4	2				2	4
Тема 2.	7							T
Предел и непрерывность								
функции	22	22	6	1	6	1	10	20
Тема 3.				1		-	10	
Дифференциальное								
исчисление функции одной								
переменной.	26	26	4	1	8	1	14	24
Тема 4.								
Дифференциальное								
исчисление функции								
нескольких переменных.	20	20	6		4		10	19
Итого	72	72	18	2	18	2	36	76
Раздел 2. Интегральное исч	исление	•		•			•	•
Тема 5.								
Неопределенный интеграл.	18	18	4	1	4	1	10	16
Тема 6.								
Определенный интеграл.	18	18	4	1	6	2	18	32
Раздел 3. Векторная алгебра	a	1	•	•	•	1	II.	
Тема 7								
Векторы на плоскости и в								
пространстве	16	16	4		4		8	15
Тема 8								
Размерность и базис								
векторного пространства.	18	18	6	2	2	2	10	19
Текущий контроль	2	2			2	2		
Итого	36	36	10	2	8	4	18	36
Итого в 1 семестре	144	144	32	6	32	8	80	130
Промежуточная аттестация – зачет.								
Раздел 4. Матрицы и систем	іы линей	іных ура	внений.	T			ı	
Тема 9								
Матрицы и определители.	10	10	4	1	4	1	2	8
Тема 10								
Системы линейных	10	10	4	1	4	1	2	8
уравнений.	_	_	_			_		
Итого	36	36	8	2	8	2	6	18
Раздел 5. Аналитическая ге	ометрия		1	1			T	ı
Тема 11								
Уравнение прямой линии. Условие параллельности и								
Условие параллельности и перпендикулярности прямых.	_					_		
	6	6	2	1	2	1	2	4
Тема 12 Окружность и эллипс.	6	6	2	1	2	1	2	4
Тема 13. Гипербола и	10	10	4		4		2	10
парабола								

Итого	36	36	8	2	8	2	6	18
Раздел 6. Теория вероятностей и математическая статистика							•	
Тема 14. Случайные события.	6	6	2		2	1	2	5
Тема 15. Случайные величины	6	6	2		2	1	2	6
и их числовые								
характеристики.								
Тема 16.								
Основные законы								
распределения случайных	10	10	4		4		2	10
величин.								
Тема 17. Случайные векторы.	6	6	2		2		2	6
Тема 18.								
Статистическое оценивание.	10	10	4	2	2		4	8
Тема 19. Проверка гипотез.	8	8	2		2		4	8
Текущий контроль.	2	2			2	2		
Итого	108	108	16	2	16	4	16	108
Итого во 2 семестре	180	180	32	6	32	8	44	150
Промежуточная аттестация	- экзамеі	Ħ						

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

4/1. Методические указания для обучающихся

Изучение теоретического материала определяется рабочей учебной программой дисциплины, включенными в нее календарным планом изучения дисциплины и перечнем литературы; рекомендуется при подготовке к занятиям повторить материал предшествующих тем рабочего учебного плана. При подготовке к практическому занятию необходимо изучить материалы лекции, рекомендованную литературу. Изученный материал следует проанализировать в соответствии с планом занятия, затем проверить степень усвоения содержания вопросов.

Практические занятия неразрывно связаны с домашними заданиями как основным видом текущей самостоятельной работы, являясь, в сочетании с систематическим изучением теоретического материала основой рейтинговой оценки знаний, фиксируемой в промежуточной и итоговой аттестациях.

Практические занятия помогают студентам глубже усвоить учебный материал, приобрести навыки научно-теоретического обобщения литературных источников, творческой работы над документами и первоисточниками. Начиная подготовку к практическому занятию, необходимо указать студентам страницы в конспекте лекций, разделы учебников и учебных пособий, чтобы они получили общее представление о месте и значении темы в изучаемом курсе. Затем следует рекомендовать им поработать с дополнительной литературой, сделать записи по рекомендованным источникам.

Следует учитывать тот факт, что время, отводимое на лекционный курс, не позволяет охватить всё, поэтому в процессе освоения дисциплины для лучшего усвоения материала необходимо регулярно обращаться к литературным источникам, предлагаемым в библиографическом списке и, кроме этого, пользоваться через компьютерную сеть университета и при самостоятельной подготовке в домашних условиях образовательными ресурсами, представленными в разделе «учебно-методическое обеспечение дисциплины», а также общедоступными интернет-порталами, содержащими большое количество как научно-популярных, так и узкоспециализированных статей, посвященных различным аспектам учебной дисциплины.

4.2. Самостоятельная работа студента

Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает:

- повторение пройденного учебного материала, чтение рекомендованной литературы;
- подготовку к практическим занятиям;
- выполнение общих и индивидуальных домашних заданий;
- работу с электронными источниками;
- подготовку к сдаче экзамена (зачета).

Планирование времени на самостоятельную работу важно осуществлять на весь семестр, предусматривая при этом повторение пройденного материала.

При подготовке к экзамену следует руководствоваться перечнем вопросов для подготовки к итоговому контролю по курсу. При этом необходимо уяснить суть основных понятий дисциплины.

Самостоятельная работа студента является неотъемлемой частью процесса изучения дисциплины «Математика». Самостоятельная работа призвана развить у студентов способность разбираться в обширном потоке информации, вычленять главное.

Результаты самостоятельной работы студентов оцениваются в баллах по пятибалльной или семибалльной шкале. Полученные студентом баллы за самостоятельную работу включаются в итоговую сумму баллов по курсу.

План самостоятельной работы по дисциплине составляется студентом и согласовывается с преподавателем в течение двух первых рабочих недель семестра, в котором читается данная дисциплина.

По данной дисциплине в перечень форм самостоятельной работы включены следующие виды:

- 1. участие в научных студенческих конференциях и семинарах;
- 2. анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов;

Текущие консультации студентов по вопросам выполнения заданий по самостоятельной работе и подведение итогов по специальным формам самостоятельной работы проводятся во время плановых аудиторных консультаций преподавателя, а также в электронной форме.

Тематика контрольных работ

- 1. Предел и непрерывность функции и последовательности.
- 2. Дифференциальное исчисление функции одной и двух переменных.
- 3. Неопределенный интеграл. Определенный интеграл.
- 4. Матрицы и определители. Системы линейных уравнений
- 5. Графический метод решения задач ЛП.
- 6.Основные понятия теории вероятностей. Случайные величины и их числовые характеристики. Основные распределения случайных величин.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю),

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень сформирован		Шкала оценивания сформированности компетенций							
ности компетенций	плохо	неудовлетво рительно	удовлетвори тельно	хорошо	очень хорошо	отлично	превосходно		
(индикатора достижения компетенций)	не за	чтено			зачтено				
<u>Знания</u>	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту знаний вследствие отказа обучающегос я от ответа	Уровень знаний ниже минимальны х требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствую щем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько несущественны х ошибок	Уровень знаний в объеме, соответствую щем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающе м программу подготовки.		
<u>Умения</u>	Отсутствие минимальны х умений. Невозможнос ть оценить наличие умений вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы основные умения. Имели место грубые ошибки.	Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания но не в полном объеме.	Продемонстр ированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстри рованы все основные умения. Решены все основные задачи . Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстр ированы все основные умения, реше ны все основные задачи с отдельными несуществен ным недочетами, выполнены все задания в полном объеме.	Продемонстр ированы все основные умения,. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов		
<u>Навыки</u>	Отсутствие владения материалом. Невозможнос ть оценить наличие навыков вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы базовые навыки. Имели место грубые ошибки.	Имеется минимальны й набор навыков для решения стандартных задач с некоторыми недочетами	Продемонстр ированы базовые навыки при решении стандартных задач с некоторыми недочетами	Продемонстри рованы базовые навыки при решении стандартных задач без ошибок и недочетов.	Продемонстр ированы навыки при решении нестандартн ых задач без ошибок и недочетов.	Продемонстр ирован творческий подход к решению нестандартн ых задач		

Шкала оценки при промежуточной аттестации

On	(енка	Уровень подготовки				
	превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно», продемонстрированы знания, умения, владения по соответствующим компетенциям на уровне, выше предусмотренного программой				
	отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично», при этом хотя бы одна компетенция сформирована на уровне «отлично»				
	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо», при этом хотя бы одна компетенция сформирована на уровне « очень хорошо»				
зачтено	хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо», при этом хотя бы одна компетенция сформирована на уровне «хорошо»				
	удовлетворител ьно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»				
не зачтено	неудовлетворит ельно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно», ни одна из компетенций не сформирована на уровне «плохо»				
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»				

5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения.

5.2.1 Контрольные вопросы

Вопросы	Код д	рормируем
	компетенции	
1. Способы задания функций.	ОПК-2	
2. Предел функции (два определения). Основные теоремы о пределах.	ОПК-2	
3. Бесконечно малые и бесконечно большие функции	ОПК-2	
4. Производная функции, ее геометрический и механический смысл.	ОПК-2	
5. Основные правила дифференцирования.	, ОПК-2	2
6. Дифференциал функции.	ОПК-2	
7. Экстремум функции. Необходимое условие экстремума.	, ОПК-2	2
8. Асимптоты. Общая схема исследования функций.	ОПК-2	

о П	ОПК-2
9. Понятие функции нескольких переменных	OTIK-2
10. Свойства неопределенного интеграла	ОПК-2
11. Определенный интеграл и его геометрический смысл.	ОПК-2
12. Основные понятия теории вероятностей. Операции над событиями	ОПК-2
13. Несобственные интегралы.	ОПК-2
14. Векторы и линейные операции над ними.	ОПК-2
15. Разложение вектора по произвольному базису.	ОПК-2
16. Прямая и плоскость в пространстве.	ОПК-2
17. Кривые 2-го порядка: эллипс, парабола, гипербола.	ОПК-2
18. Определители 2-го и 3-го порядка и их свойства.	ОПК-2
19. Матрицы и действия над ними.	ОПК-2
20. Основные понятия теории вероятностей.	ОПК-2
21. Теорема сложения вероятностей.	ОПК-2
22. Формула Байеса.	ОПК-2
23. Локальная и интегральная теоремы Муавра-Лапласа.	ОПК-2
24. Определение случайной величины. Функция распределения и ее свойства.	ОПК-2
25. Плотность распределения и функция распределения непрерывной случайной величины.	ОПК-2
26. Распределения дискретных случайных величин: биномиальное распределение, распределение Пуассона и их числовые характеристики.	ОПК-2
27. Равномерное распределение случайных величин и их числовые характеристики.	ОПК-2

Примеры практических заданий по теме «Предел последовательности. Предел функции» для оценки сформированности компетенции.

1) - 4) Вычислить предел.

Вариант 1	Вариант 2
1) $\lim_{n \to \infty} (\sqrt{n^2 + 1} - \sqrt{n^2 - 1})$	1) $\lim_{x \to \infty} (\sqrt{x^3 + 1} - \sqrt{x^3 - 1})$

Примеры решения заданий по теме

«Предел последовательности. Предел функции» для оценки сформированности компетенции

1. Вычислить $\lim_{x \to \infty} (\sqrt{x^2 + 5} - \sqrt{x^2 - 5})$.

$$\lim_{x \to \infty} (\sqrt{x^2 + 5} - \sqrt{x^2 - 5}) = (\infty - \infty) = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 5} - \sqrt{x^2 - 5})(\sqrt{x^2 + 5} + \sqrt{x^2 - 5})}{\sqrt{x^2 + 5} + \sqrt{x^2 - 5}} = \frac{1}{\sqrt{x^2 + 5}} = \frac{1}{$$

$$= \lim_{x \to \infty} \frac{10}{\sqrt{x^2 + 5} + \sqrt{x^2 - 5}} = 0.$$

2. Вычислить
$$\lim_{x\to 1} \frac{x^2 - 5x + 4}{2x^2 + 5x - 7}$$

$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{2x^2 + 5x - 7} = \left(\frac{0}{0}\right) = \lim_{x \to 1} \frac{(x - 1)(x - 4)}{2(x - 1)(x + \frac{7}{2})} = \lim_{x \to 1} \frac{x - 4}{2x - 7} = \frac{3}{5}.$$

3. Вычислить
$$\lim_{x\to\infty} x^4 \cdot \sin \frac{1}{x^3}$$

$$\lim_{x \to \infty} x^4 \cdot \sin \frac{1}{x^3} = (\infty \cdot 0) = \lim_{x \to \infty} x^4 \cdot \frac{1}{x^3} = \lim_{x \to \infty} x = \infty.$$

4. Вычислить
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^x$$

$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^x = (1^{\infty}) = \lim_{x \to \infty} \left(\frac{2x+1+2}{2x+1} \right)^x = \lim_{x \to \infty} \left(\left(1 + \frac{2}{2x+1} \right)^{\frac{2x+1}{2}} \right)^{\frac{2x}{2x+1}} = e^{\lim_{x \to \infty} \frac{2x}{2x+1}} = e^{\int_{-\infty}^{\infty} \frac{2x}{2x+1}} = e^{\int_{-\infty}^{\infty}$$

Вычислить
$$\lim_{x\to\infty} \frac{x^3 + 2x^2 - 3x + 5}{2x^4 + 2x - 1}$$

$$\lim_{x \to \infty} \frac{x^3 + 2x^2 - 3x + 5}{2x^4 + 2x - 1} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{2}{x^2} - \frac{3}{x^3} + \frac{5}{x^4}}{2 + \frac{2}{x^3} - \frac{1}{x^4}} = \frac{0}{2} = 0.$$

Примеры практических заданий по теме «Дифференциальное исчисление» для оценки сформированности компетенции

- 1) Найти производную функции;
- 2) Найти производную функции;
- 3) Найти частные производные функции;
- 4) Исследовать функцию на экстремум.

Вариант 1	Вариант 2			
$\int_{1}^{1} y = e^{x^2} ctg^{-2} (3x + 2)$	$\int_{1}^{1} y = 5^{x^2} tg (6x + 3)$			
$y = \frac{\log_{2} 3x}{\cos^{3}(x+3)}$	$y = \frac{\cos^{2}(6x + 2)}{e^{x^{2} + 2x}}$			
$z = e^{x}(6x + y^{2})$	$z = \cos(x^2 + \sqrt{y})$			
$\int_{4)} z = e^{\frac{x}{2}} (x + y^2)$	4) $z = x^2 + 2y^2 - 3 \ln x - 6 \ln y$			
Вариант 3	Вариант 4			
1) $y = 3^{x^3} arctg (6x^2 + 1)$	$\int_{1}^{1} y = \ln x^{2} t g (3x + 2)$			
$y = \frac{\sin^{3}(3x+4)}{\log_{3}x^{2}}$	$y = \frac{e^{3x}}{\sin^2(x+3)}$			
$3) z = \ln x + y^2$	$3) z = \ln x + \sqrt{y}$			
4) $z = 3y + 6x - y^2 - xy + x^2$	$z = x^2 y (2 - x - y)$			

Примеры решения заданий по теме

«Дифференциальное исчисление»

1. Найти производную функции $y = 2^{x^3} \cdot \arccos x^3$.

$$y' = 2^{x^3} \ln 2 \cdot 3x^2 \cdot \arccos x^3 + 2^{x^3} \cdot \left(-\frac{1}{\sqrt{1-x^6}}\right) \cdot 3x^2 = 3x^2 2^{x^3} \left(\ln 2 \arccos x^3 - \frac{1}{\sqrt{1-x^6}}\right)$$

2. Найти производную функции $y = \frac{2^{x^2}}{\arccos x^3}$.

$$y' = \frac{2^{x^3} \ln 2 \cdot 3x^2 \arccos x^3 - 2^{x^3} \cdot \left(-\frac{1}{\sqrt{1 - x^6}}\right) \cdot 3x^2}{\arccos^2 x^3} = \frac{3x^2 2^{x^3} \left(\ln 2 \arccos x^3 + \frac{1}{\sqrt{1 - x^6}}\right)}{\arccos^2 x^3}$$

3. Найти частные производные функции $z = \sin(x^2 + y^2)$.

$$z'_{x} = \cos(x^{2} + y^{2}) \cdot 2x$$

$$z'_{y} = \cos(x^2 + y^2) \cdot 2y$$

4. Исследовать функцию на экстремум $z = x^2 - xy + y^2 - 2x + y$.

Находим частные производные первого порядка:

$$z'_{x} = 2x - y - 2$$

$$z'_{y} = -x + 2y + 1$$

Решаем систему уравнений:

$$\begin{cases} 2x - y - 2 = 0 \\ -x + 2y + 1 = 0 \end{cases}$$

x = 1, y = 0. Получаем, что (1,0) – стационарная точка.

Находим частные производные второго порядка:

$$z''_{xx} = 2$$
, $z''_{yy} = 2$, $z''_{xy} = -1$.

$$A = 2, C = 2, B = -1.$$

Вычисляем значение Δ .

$$\Delta = 4 - 1 = 3$$
.

Так как $\Delta > 0,~ A > 0,~ \text{то}~(1,0)$ – точка минимума, $~z_{_{\min}}~=~-1$

Примеры практических заданий по теме «Интегральное исчисление» для оценки сформированности компетенции.

- 1)-3) Вычислить интеграл;
- 4) Найти площадь фигуры, ограниченной кривыми.

Вариант 1	Вариант 2
1) $\int (2x^3 - 3x^2 + 4^{2x+1}) dx$	$1) \int \frac{1 - \sqrt{2x}}{\sqrt{2x}} dx$
$2) \int \frac{x+1}{x^2 + 2x - 3} dx$	$2) \int \frac{3x^2}{x^3 + 1} dx$
$\int x \ln x dx$	$\int \ln x dx$
4) $y = 0, x = 0, x = \frac{\pi}{4}, y = \cos 2x$	4) $xy = 1$, $y = x^2$, $x = 3$, $y = 0$
Вариант 3	Вариант 4
$1) \int \frac{dx}{9 x^2 + 1}$	$\int \cos^2 \frac{x}{2} dx$

$2) \int e^x \sqrt{e^x + 2} dx$	$2) \int \frac{x^2}{\sqrt{1-x^6}} dx$
$\int x 3^x dx$	$3) \int x \cos x dx$
4) $y = x^2 + 3$, $y = \frac{4}{x}$, $x = 0$, $y = 2$	4) $y = x^3$, $y = 4x$

Примеры решения заданий по теме

«Интегральное исчисление»

1. Вычислить интеграл
$$\int (2x^5 - 7x^3 + 2^x - \cos(2x + 1)) dx$$

$$\int (2x^5 - 7x^3 + 2^x - \cos(2x + 1)) dx = \frac{2x^6}{6} - \frac{7x^4}{4} + \frac{2^x}{\ln 2} - \frac{1}{2}\sin(2x + 1) + C =$$

$$= \frac{x^6}{3} - \frac{7x^4}{4} + \frac{2^x}{\ln 2} - \frac{1}{2}\sin(2x + 1) + C$$

$$\int \frac{x^4}{x^5 + 1} dx$$

2. Вычислить интеграл

$$\int \frac{x^4}{x^5 + 1} dx = \begin{vmatrix} t = x^5 \\ dt = 5x^4 dx \end{vmatrix} = \frac{1}{5} \int \frac{dt}{t + 1} = \frac{1}{5} \ln|t + 1| + C = \frac{1}{5} \ln|x^5 + 1| + C$$

3. Вычислить интеграл $\int x \cos 2x dx$

$$\int x \cos 2x dx = \begin{vmatrix} u = x, du = dx \\ dv = \cos 2x dx, v = \frac{1}{2} \sin 2x \end{vmatrix} = \frac{1}{2} x \sin 2x - \frac{1}{2} \int \sin 2x dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C$$

4. Найти площадь фигуры, ограниченной кривыми: $y = x^2$, $y = \frac{x^2}{2} + 2$.

Находим абсциссы точек пересечения: $x^2 = \frac{x^2}{2} + 2$, $\frac{x^2}{2} = 2$, $x^2 = 4$, x = 2, x = -2

Для площади фигуры получаем:

$$S = \int_{-2}^{2} \left(\frac{x^{2}}{2} + 2 - x^{2} \right) dx = \int_{-2}^{2} \left(2 - \frac{x^{2}}{2} \right) dx = \left(2x - \frac{x^{3}}{6} \right) \Big|_{-2}^{2} = 4 - \frac{8}{6} - (-4 + \frac{8}{6}) = 8 - \frac{8}{3} = \frac{16}{3} = 5\frac{1}{3}$$

Примеры практических заданий по теме «Элементы линейной алгебры» для оценки сформированности компетенции

- 1) Выполнить действия с матрицами;
- 2) Решить систему уравнений тремя способами (методом Крамера, методом Гаусса, с помощью обратной матрицы).

Вариант 1	Вариант 2		
$ \begin{pmatrix} 3 & 4 & 6 \\ 9 & 1 & 3 \\ 8 & 4 & 2 \end{pmatrix} \begin{pmatrix} 17 & 0 & 2 \\ 4 & 3 & 1 \\ 2 & 1 & 1 \end{pmatrix}^{T} $	$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^{T} $ $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $ $ \begin{pmatrix} 2 & 1 & 2 \end{pmatrix} $		
$\begin{cases} 2x_1 - x_2 - x_3 = 0, \\ x_1 + x_2 + x_3 = 3, \\ 2x_1 + x_2 - x_3 = 2. \end{cases}$	$\begin{cases} x_1 + 2x_2 + x_3 = 4, \\ x_1 - 2x_2 + x_3 = 0, \\ x_1 + 3x_2 - 3x_3 = 1. \end{cases}$		

Вариант 3	Вариант 4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{cases} x_1 + 2x_2 + x_3 = 8, \\ 2x_1 - x_2 + x_3 = 4, \\ 3x_1 - 3x_2 + x_3 = 2. \end{cases}$	$\begin{cases} x_1 + x_2 + x_3 = 9, \\ 2x_1 + x_2 + x_3 = 12, \\ 3x_1 - 2x_2 + x_3 = 6. \end{cases}$		

Примеры решения заданий по теме

«Элементы линейной алгебры»

Решить систему уравнений тремя способами (методом Крамера, методом Гаусса, с помощью обратной матрицы).

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 14, \\ 2x_1 - 2x_2 + x_3 = 1, \\ 3x_1 - x_2 + x_3 = 4. \end{cases}$$

А) Решение системы методом Крамера.

$$\Delta = \begin{vmatrix} 2 & 3 & 2 \\ 2 & -2 & 1 \\ 3 & -1 & 1 \end{vmatrix} = 2 \cdot (-2) \cdot 1 + 3 \cdot 3 \cdot 1 + 2 \cdot 2 \cdot (-1) - [2 \cdot (-2) \cdot 3 + 2 \cdot 3 \cdot 1 + 2 \cdot 1 \cdot (-1)] = 9$$

$$\Delta_{1} = \begin{vmatrix} 14 & 3 & 2 \\ 1 & -2 & 1 \\ 4 & -1 & 1 \end{vmatrix} = 9, \ \Delta_{2} = \begin{vmatrix} 2 & 14 & 2 \\ 2 & 1 & 1 \\ 3 & 4 & 1 \end{vmatrix} = 18, \ \Delta_{3} = \begin{vmatrix} 2 & 3 & 14 \\ 2 & -2 & 1 \\ 3 & -1 & 4 \end{vmatrix} = 27$$

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{9}{9} = 1$$
, $x_2 = \frac{\Delta_2}{\Delta} = \frac{18}{9} = 2$, $x_3 = \frac{\Delta_3}{\Delta} = \frac{27}{9} = 3$.

Ответ: (1,2,3).

Б) Решение системы с использованием обратной матрицы.

Для матрицы
$$A=\begin{bmatrix}2&3&2\\2&-2&1\\3&-1&1\end{bmatrix}$$
 найдем обратную матрицу A^{-1} .

Во-первых,
$$\begin{vmatrix} 2 & 3 & 2 \\ 2 & -2 & 1 \\ 3 & -1 & 1 \end{vmatrix} = 9 \neq 0$$
. Следовательно, матрица A обратима.

Транспонируем матрицу
$$A: A' = \begin{pmatrix} 2 & 2 & 3 \\ 3 & -2 & -1 \\ 2 & 1 & 1 \end{pmatrix}$$
.

Находим присоединенную матрицу:
$$A' = \begin{pmatrix} -1 & -5 & 7 \\ 1 & -4 & 2 \\ 4 & 11 & -10 \end{pmatrix}$$

Получаем обратную матрицу:
$$A^{-1} = \frac{1}{|A|}A'$$
,

$$A^{-1} = \begin{bmatrix} -\frac{1}{9} & -\frac{5}{9} & \frac{7}{9} \\ \frac{1}{9} & -\frac{4}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{11}{9} & -\frac{10}{9} \end{bmatrix}$$

Тогда
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{9} & -\frac{5}{9} & \frac{7}{9} \\ \frac{1}{9} & -\frac{4}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{11}{9} & -\frac{10}{9} \end{pmatrix} \cdot \begin{pmatrix} 14 \\ 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Ответ: (1,2,3).

В) Решение системы методом Гаусса.

$$A = \begin{vmatrix} 2 & 3 & 2 & | 14 \\ 2 & -2 & 1 & | 1 \\ 3 & -1 & 1 & | 4 \end{vmatrix} \rightarrow \begin{vmatrix} 2 & 3 & 2 & | 14 \\ 0 & -5,5 & -2 & | -17 \end{vmatrix} \rightarrow \begin{vmatrix} 2 & 3 & 2 & | 14 \\ 0 & 5,5 & 2 & | 14 \end{vmatrix} \rightarrow \begin{vmatrix} 2 & 3 & 2 & | 14 \\ 0 & 5,5 & 2 & | 14 \end{vmatrix}$$

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 14, \\ 55x_2 + 11x_3 = 143, \\ 9x_3 = 27. \end{cases}$$

Осталось только ее решить.

Ответ: (1,2,3)

Примеры практических заданий по теме «Теория вероятностей» для оценки сформированности компетенции.

Вариант № 1

- 1. Две машинистки печатали рукопись. Первая напечатала 1/3 всей рукописи, вторая остальное. Вероятность того, что первая машинистка сделала ошибки, равна 0,15, для второй 0,1. При проверке были обнаружены ошибки. Найти вероятность того, что ошиблась первая машинистка.
- 2. В лотерее разыгрывается мотоцикл стоимостью 250 руб., велосипед стоимостью 50 руб. и часы ценой 40 руб. Найти закон распределения случайной величины, равной выигрышу, и математическое ожидание выигрыша для лица, имеющего один билет, если число билетов равно 100.
- 3. Случайная величина распределена по нормальному закону. Известно, что математическое ожидание ее равно 10 и среднее квадратическое отклонение равно 5. Определить вероятность того, что случайная величина примет значения, принадлежащие интервалу (7; 12).

Вариант № 2.

- 1. В сборочный цех завода детали поступают из двух цехов: из первого 70%, из второго 30%, причем 10% деталей из первого цеха и 20% из второго, отличного качества. Определить вероятность того, что взятая наудачу деталь не будет отличного качества.
- 2. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?
- 3. Случайная величина распределена по нормальному закону. Ее математическое ожидание равно 10 и среднее квадратическое отклонение составляет 5. Определить вероятность того, что отклонение значений случайной величины от математического ожидания не превзойдет по абсолютной величине $\varepsilon = 2$.

Вариант № 3.

- 1. Имеется 5 партий радиоламп: 3 партии по 8 штук, в каждой из которых 6 стандартных и 2 нестандартных, и 2 партии по 10 штук, в каждой из которых 7 стандартных и 3 нестандартных. Из одной, взятой на удачу, партии случайным образом выбирается одна деталь. Определить вероятность того, что эта деталь будет стандартной.
- 2. В автобусе 4 пассажира. Считается, что каждый из пассажиров с равной вероятностью может сойти на любой из оставшихся трех остановок. Пусть X означает число пассажиров, сошедших на первой остановке. Написать закон распределения для случайной величины X и найти ее математическое ожидание.
- 3. Известно, что вес некоторых плодов, выращиваемых в совхозе, подчиняется нормальному закону с математическим ожиданием 175г и $\sigma = 25$. Определить вероятность того, что вес наудачу взятого плода будет: а) заключен в пределах от 125 до 250 г; б) не менее 250г; в) не более 300г.

Примеры решения заданий по теме

«Теория вероятностей»

Пример 1. В магазин поступили соответственно 20, 15, и 10 пальто трех различных фирм. Известно, что доля высококачественных изделий среди продукции первой фирмы в среднем

составляет 70%, второй - 80%, третьей — 60%. Наудачу выбранное пальто оказалось плохим. Найти вероятность того, что оно поставлено второй фирмой.

Решение. Для выбранного пальто могут наступить события: A_i - оно поставлено i-той фирмой, B - оно оказалось плохим. Группа событий: A_1 , A_2 , A_3 - является полной, причем событие B может появиться только вместе с одним из них. По условию задачи:

$$P(A_1) = \frac{20}{45}, \quad P(B/A_1) = 0.3;$$

 $P(A_2) = \frac{15}{45}, \quad P(B/A_2) = 0.2;$
 $P(A_3) = \frac{10}{45}, \quad P(B/A_3) = 0.4.$

Полная вероятность события:

$$P(B) = \sum_{i} P(A_{i})P(B/A_{i}) = \frac{20}{45}0.3 + \frac{15}{45}0.2 + \frac{10}{45}0.4 = \frac{13}{45}.$$

Выбранное пальто оказалось плохим, наступило событие *В*. Определим вероятность «гипотезы, состоящей в том, что пальто поставлено в магазин второй фирмой» по формуле:

$$P(A_2/B) = \frac{P(A_2)P(B/A_2)}{P(B)} = \left(\frac{15}{45}0.2\right) \div \left(\frac{13}{45}\right) = \frac{3}{13} \approx 0.2307$$
.

Пример 2. Клиенты банка, не связанные друг с другом, не возвращают кредиты в срок с вероятностью 0,1. Составить закон распределения числа возвращенных в срок кредитов из 5 выданных. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины.

<u>Решение</u>. Для каждого выданного кредита может наступить одно из событий: он не возвращен - \overline{A} или возвращен - A, по условию задачи с вероятностями P(A) = 0,9 = p; $P(\overline{A}) = 0,1 = q$. Вероятности событий неизменны для всех кредитов, следовательно, имеют место независимые повторные испытания, число которых мало n = 5.

$$m = 0$$
 $P(X = 0) = P(B_0) = C_5^0 \cdot (0.9)^0 \cdot (0.1)^5 = 0.00001$

$$m = 1$$
 $P(X = 1) = P(B_1) = C_5^1 \cdot (0.9)^1 \cdot (0.1)^4 = 0.00045$

$$m = 2$$

$$P(X = 2) = P(B_{2}) = C_{5}^{2} \cdot (0,9)^{2} \cdot (0,1)^{3} = 0,0081$$

$$m = 3$$

$$P(X = 3) = P(B_{3}) = C_{5}^{3} \cdot (0,9)^{3} \cdot (0,1)^{2} = 0,0729$$

$$m = 4$$

$$P(X = 4) = P(B_{4}) = C_{5}^{4} \cdot (0,9)^{4} \cdot (0,1)^{1} = 0,32805$$

$$m = 5$$

$$P(X = 5) = P(B_{5}) = C_{5}^{5} \cdot (0,9)^{5} \cdot (0,1)^{0} = 0,59049$$

Характеристики биномиально распределенной случайной величины можно найти, используя известные формулы:

Математическое ожидание - $M(X = m) = 5 \cdot 0.9 = 4.5$.

Дисперсия -
$$D(X = m) = 5 \cdot 0.9 \cdot 0.1 = 0.45$$
.

Найдем вероятность события - B, состоящее в том, что число возвращенных кредитов не менее двух, т.е. или 2, или 4 или 5:

$$P(B) = P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0,0081 + 0,0729 + 0,32805 + 0,59049 = 0,99954$$
;

Пример 3. В населенном пункте три рынка. Вероятность того, что на рынке есть необходимый для господина N товар, равна 0.6. Он пытается купить этот товар. Если на очередном рынке отсутствует данный товар, господин отправляется за ним на следующий рынок. Поиски прекращаются либо с приобретением товара, либо после того как посещены все рынки. Составить закон распределения числа посещенных рынков. Построить функцию распределения найти математическое ожидание, дисперсию и среднее квадратическое отклонение числа посещенных рынков.

<u>Решение</u>. X — число посещенных рынков. A_i — событие, состоящее в том, что на i-том посещенном рынке есть необходимый товар, $\overline{A_i}$ - отсутствует. Вероятности этих событий: $P(A_i) = 0.6 = p$, $P(\overline{A_i}) = 0.4 = q$, $i = \overline{1,3}$.

Закон распределения и рабочие расчеты по характеристикам случайной величины:

x_i	$p_i = P(X = x_i)$	$x_i p_i$	$x_i^2 p_i$
1	$p_1 = P(X = 1) = P(A_1) = 0.6$	0.6	0.6
2	$p_2 = P(X = 2) = P(\overline{A_1}A_2) = P(A_1) \cdot P(A_2) = 0.4 \cdot 0.6 = 0.24$	0.48	0.96
3		0.48	1.44
3	$p_3 = P(X = 3) = P(\overline{A_1}\overline{A_2}) = P(A_1) \cdot P(\overline{A_2}) = 0.4 \cdot 0.4 = 0.16.$	0.48	1.44
Σ	1.0	1.56	3.0

Характеристики случайной величины – числа посещенных рынков:

Математическое ожидание - $M(X) = \sum_{i} x_{i} p_{i} = 1.56$.

Дисперсия -
$$D(X) = M(X^2) - M^2(X) = 3 - 1.56^2 = 0.5664$$
.

Среднее квадратическое отклонение - $\sigma(X) = \sqrt{D(X)} = \sqrt{0.5664} = 0.7526$.

Пример 4. Торговая точка имеет в продаже большое количество различных товаров. Средняя выручка в день составляет 5 д.е., а среднее квадратическое отклонение 0.9 д.е. Составить плотность вероятности и функцию распределения выручки торговой точки. Найти вероятность того, что выручка торговой точки в случайно выбранный день: а) составит от 4 до 7 д.е., б) будет отличаться от средней выручки не более чем на 2 д.е.

<u>Решение</u>. X - выручка торговой точки, случайная величина, представляющая собой сумму большого количества случайных величин — выручек от продажи различных товаров, т.о., согласно теореме Ляпунова, имеет нормальный закон распределения.

Средняя выручка, по теории выборки (математическая статистика), является хорошей оценкой математического ожидания данной случайной величины. Следовательно: M(X)=5 д.е.; $\sigma(X)=\sqrt{D(X)}=0.9$ д.е.

Плотность вероятности -
$$f_{_{\mathit{H}}}(x) = \frac{1}{0.9\sqrt{2\pi}} e^{-\frac{\left(x-5\right)^2}{2\cdot0.81}}$$
, $x \in R$.

Функция распределения -
$$F(x) = 0.5 + 0.5 \Phi\left(\frac{x-5}{0.9}\right), \quad x \in R$$
.

Вероятность того, что выручка торговой точки составит от 4 до 7 д.е.:

$$P(4 \le X \le 7) = 0.5 \left(\Phi\left(\frac{7-5}{0.9}\right) - \Phi\left(\frac{4-5}{0.9}\right) \right) =$$

$$= 0.5 \left(\Phi\left(2.22\right) - \Phi\left(-1.11\right) \right) = 0.5(0.9736 + 0.7330) = 0.8533$$

Вероятность того, что выручка будет отличаться от средней выручки

не более чем на 2 д.е. -
$$P(|X - 5| \le 2) = \Phi\left(\frac{2}{0.9}\right) = \Phi(2.22) = 0.9736$$
.

Примеры тестовых заданий для оценки сформированности компетенции.

Тест по теме «Основы математического анализа»

Тест тематического контроля по темам, связанным с основами математического анализа общего курса высшей математики для студентов первого курса ИЭП специальности «Таможенное дело»

Тест состоит из частей А и В. На его выполнение отводится 30 минут. В части А каждое задание оценивается в 1балл, полностью правильно выполненные задания В1 и В2 по 5 баллов, Задание ВЗ -4 балла. Максимальное количество баллов – 36.

Часть А

К каждому заданию части А дано несколько ответов, из которых только один верный. Выберите верный, по Вашему мнению, ответ.

- А1. Последовательность, имеющая предел называется
 - 1) расходящейся
- 2) предельной
- 3) сходящейся

4) беспредельной

(Правильный ответ-3)

- A2. Данный тип неопределённости $\lim_{n\to\infty}\frac{n^2+n+1}{n^2}$ называется
 - 1) $\infty \infty$
- 2) ∞/∞ 3) $\infty+\infty$ 4) 0/0

(Правильный ответ-2)

- А3. Данный тип неопределённости $\lim_{n \to \infty} \sqrt{n^3 + 1} \sqrt{n^3 1}$ называется
 - 1) $\infty \infty$
- 2) ∞/∞ 3) ∞+∞ 4) 0/0

(Правильный ответ-1)

Часть В

В заданиях типа В найдите соответствие и запишите ответы в виде последовательности цифр и букв. например 1А2Б3Г4В5Д

B1.

Название функции	Вид
1. Одной переменной	A. $z=f(x_1,x_2x_m)$
2. Тригонометрическая	$ b. z = e^x + y $
3. Двух переменных	$B. y = \cos x$
4. Многих переменных	$\Gamma. y=x^2+10$
5. Обратная тригонометрическая	Д. y= arctg x

B2.

Функция	Производная
1. x ⁿ	A. $\frac{1}{\cos^2 x}$
2. e ^x 3. ln x	Б. соѕ х
4. sin x	$B.\frac{1}{x}$
5.tg x	Г. e ^x
	Д. nx ⁿ⁻¹

(правильный ответ 1Д,2Г,3В,4Б,5А)

B3.

Интеграл	Функция,
	которой он равен.
1 (n	A. $tg x + C$
1. $\int x^n dx$	A. $\lg x + C$
2. $\int \sin x dx$	Б. $ lnx + C$
$3. \int \frac{dx}{x}$	B. $-\cos x + C$
x	$\Gamma \frac{x^{n+1}}{n+1} + C$
$4. \int \frac{dx}{\cos^2 x}$	n+1
cos ² x	n≠-1

(Правильный ответ 1Г,2В,3Б,4А)

7. Методические материалы, определяющие процедуры оценивания.

Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ № 630-ОД от $29.12.2017 \, \Gamma$.,

Положение о фонде оценочных средств, утвержденное приказом ректора ННГУ от 10.06.2015 №247-ОД.

8. Учебно-методическое и информационное обеспечение дисциплины (модуля)

- а) основная литература:
- 1. Ячменёв Л.Т.Высшая математика: Учебник / Л.Т. Ячменёв. М.: ИЦ РИОР: НИЦ Инфра-М, 2013. 752 с. http://znanium.com/bookread2.php?book=344777

б) дополнительная литература:

- 1. Высшая математика в упражнениях и задачах: [учеб. пособие для вузов]./Данко П. Е., Попов А. Г., Кожевникова Т. Я., Данко С. П. М.: АСТ : Мир и Образование,
 - 2014. 816 с. Режим доступа: http://www.lib.unn.ru/php/details.php?DocId=465158
- 2. Шипачев В. С. Высшая математика: учеб. и практикум для бакалавров. М.: Юрайт, 2014.
 - 447 с. Режим доступа: http://www.lib.unn.ru/php/details.php?DocId=465629
- 3. Ильин В. А., Позняк Э. Г. Линейная алгебра: учеб. для студентов физ. специальностей и специальности "Приклад. математика". М.: Физматлит, 2014. 280 с. Режим доступа: http://www.lib.unn.ru/php/details.php?DocId=465591
- в) программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины)
 - 1. www.Math-Net.ru имеется свободный доступ (по истечении 3-х лет со дня публикации) к математическим журналам Отделения Математики РАН,
 - 2. http://mathworld.wolfram.com краткие энциклопедические статьи по математике,
 - 3. http://eqworld.ipmnet.ru решение различных типов уравнений, в том числе, дифференциальных,
 - 4. http://www-history.mcs.st-andrews.ac.uk статьи по истории математики.

7. Материально-техническое обеспечение дисциплины

Занятия проводятся в специальных помещениях, представляющих собой учебные аудитории для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещениях для самостоятельной работы, которые укомплектованы специализированной мебелью и техническими средствами обучения.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплины.

Программа	составлена	в соотве	тствии с	требованиями	OC	ННГУ	38.05.02	«Таможенное
дело», напр	авленность «	«Таможен	ные опера	ации и таможен	ный	контро	ль»	

Автор (ы)	Колпаков А.	Б.	
Заведующий і	кафедрой	Болдыревский П.Б.	

Программа одобрена на заседании методической комиссии Института экономики и предпринимательства протокол N = 3 от 15.03.2021 .