МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_
«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДЕНО решением Ученого совета ННГУ протокол от (02)» декабря 2024 г. № 10

Рабочая программа дисциплины «Физика высокочастотных и оптических разрядов»

Уровень высшего образования **Подготовка кадров высшей квалификации**

Научная специальность **1.3.19** Лазерная физика

Программа подготовки научных и научно-педагогических кадров в аспирантуре **Лазерная физика**

Форма обучения **Очная**

Нижний Новгород 2025 год

1. Место и цель дисциплины в структуре ОПОП

Дисциплина «Физика высокочастотных и оптических разрядов» относится к числу элективных дисциплин образовательного компонента программы аспирантуры и изучается на 2-ом году обучения в 3 семестре.

Цель дисциплины — ознакомление студентов с фундаментальными принципами электродинамики высокочастотных и оптических разрядов.

2. Планируемые результаты обучения по дисциплине

Выпускник, освоивший программу, должен

знать

- основные законы и уравнения электродинамики высокочастотных и оптических разрядов;
- законы и механизмы процессов в газоразрядной плазме;
- основные особенности генерации электромагнитного излучения;

уметь:

- анализировать физические аспекты теории и возможности ее использования для решения научно-исследовательских задач;
- использовать полученные знания с учетом новейшего отечественного и зарубежного опыта для анализа и исследования особенностей высокочастотных и оптических разрядов;

владеть:

- теоретическими и численными методами анализа плазменно-полевых структур в высокочастотных и оптических разрядах.

3. Структура и содержание дисциплины.

Объем дисциплины (модуля) составляет 2 з.е., всего - 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа), 36 часов составляет самостоятельная работа обучающегося.

Структура дисциплины

Таблица 2

В том числе Контактная работа, часов Самостоятельная пекционного типа пабораторного Консультации семинарского Наименование раздела Всего, Занятия Занятия Занятия дисциплины часов 1. Введение. Объемные 4 2 2 2 элементарные процессы 4 2 2 2 2. Процессы переноса в газоразрядной плазме 2 2 2 3. Уравнения баланса частиц 4 и энергии 4. Пробой газа в статических, 7 4 4 3 высокочастотных и оптических полях

5. Электродинамика разряда	11	6		6	5
в волновых					
электромагнитных пучках					
6. Основные типы	12	6		6	6
ионизационно-полевых					
неустойчивостей разряда					
7. Механизмы	11	6		6	5
преобразования спектров					
электромагнитного					
излучения при пробое					
8. Использование оптических	10	4		4	6
разрядов для генерации					
электромагнитного					
излучения в					
труднодоступных частотных					
диапазонах					
9. Численные методы	9	4		4	5
моделирования плазменно-					
полевых структур в					
высокочастотных и					
оптических разрядах на					
высокопроизводительных					
вычислительных системах					
Промежуточная аттестация	зачет				
Итого	72	36		36	36

Таблица 3

Содержание дисциплины

No	Наименование раздела	Содержание раздела	Форма Форм	
π/	дисциплины		проведени	текущего
П			я занятия	контроля*
1.	Введение. Объемные	Объемные элементарные	Лекции	-
	элементарные процессы	процессы, определяющие		
		кинетику ионизации в газовом		
		разряде (электронный удар,		
		сечения ионизации,		
		диссоциативное и		
		трехчастичное прилипание,		
		электрон-ионная рекомбинация,		
		разрушение отрицательных		
		ионов).		
2.	Процессы переноса в	Свободная и амбиполярная	Лекции	-
	газоразрядной плазме	диффузия; термодиффузия;		
		теплопроводность,		
		проводимость.		
3.	Уравнения баланса	Уравнения баланса частиц и	Лекции	-
	частиц и энергии	энергии в газовом разряде; их		
		стационарные и простейшие		

		динамические решения.		
		Процессы нагрева электронной		
4	П	компоненты в разряде.	П	
4	Пробой газа в	Пороги пробоя, зависимость	Лекции	-
	статических,	скорости лавинообразного		
	высокочастотных и	процесса от давления газа,		
	оптических полях	частоты и амплитуды		
		электрического поля. Влияние		
		плазмы разряда на величину и		
		структуру поля.		
		Основные механизмы		
		насыщения лавины при пробое.		
		Многофотонная и туннельная		
_	2	ионизация.	П	
5.	Электродинамика	Роль процессов рефракции и	Лекции	-
	разряда в волновых	поглощения волны. Волна		
	электромагнитных	пробоя в волновом пучке.		
	пучках	Предельные значения		
		электронной концентрации.		
		Разряд вблизи одиночного		
		электрода.	-	
6.	Основные типы	Вынужденное ионизационное	Лекции	-
	ионизационно-полевых	рассеяние. Мелкомасштабная		
	неустойчивостей разряда	плазменно-резонансная		
		неустойчивость. Ионизационно-		
		полевая неустойчивость		
		пространственно-ограниченного		
		разряда. Ионизационно-		
		перегревная неустойчивость в		
	16	поле электромагнитной волны.		
7.	Механизмы	Частотно-модовая конверсия	Лекции	-
	преобразования спектров	электромагнитных волн в		
	электромагнитного	процессе пробоя. Резонансное и		
	излучения при пробое	ударное возбуждение		
		плазменных колебаний и их		
	**	излучение.	Tr.	
8.	Использование	Генерация терагерцового	Лекции	-
	оптических разрядов для	излучения при оптическом		
	генерации	пробое газа: схемы с внешними		
	электромагнитного	статическими полями и схемы		
	излучения в	самоиндуцированной генерации		
	труднодоступных	ионизирующими полями.		
	частотных диапазонах	Генерация вакуумного		
		ультрафиолетового и мягкого		
		рентгеновского излучения при		
	***	оптическом пробое газа.	Tr.	
9.	Численные методы	Методы решения	Лекции	-
	моделирования	нестационарного уравнения		
	плазменно-полевых	Шредингера для описания		
	структур в	процессов ионизации в		
	высокочастотных и	интенсивных электромагнитных		
	оптических разрядах на	полях. Псевдоспектральный		

высокопроизводительных	метод, быстрое преобразование	
вычислительных	Фурье, дискретное	
системах	преобразование Ханкеля.	
	Методы решения системы	
	уравнений Максвелла-	
	Шредингера на	
	многопроцессорных	
	вычислительных системах.	
	Модели пониженной	
	размерности. Алгоритмы	
	распараллеливания.	

4. Формы организации и контроля самостоятельной работы обучающихся

- 1. Собеседование с обучающимися во время аудиторных занятий.
- 2. Как оценочный способ контроля самостоятельной работы студентов и одновременно разновидность интерактивного обучения используется форма групповой консультации по отдельным разделам дисциплины в виде семинаров по современным проблемам радиофизики, проводимым на кафедре факультативно.

5. Фонд оценочных средств для аттестации по дисциплине

5.1. Критерии и процедуры оценивания результатов обучения по дисциплине. При выполнении всех работ учитываются следующие основные критерии:

- уровень теоретических знаний (подразумевается не только формальное воспроизведение информации, но и понимание предмета, которое подтверждается правильными ответами на дополнительные, уточняющие вопросы);
- умение использовать теоретические знания при анализе конкретных проблем, ситуаций;
- качество изложения материала, то есть обоснованность, четкость, логичность ответа, а также его полнота (то есть содержательность, не исключающая сжатости);
 - способность устанавливать внутри- и межпредметные связи,
- оригинальность мышления, знакомство с дополнительной литературой и другие факторы.

Описание шкалы оценивания на промежуточной аттестации в форме зачета

Оценка	Уровень подготовленности, характеризуемый оценкой			
	владение программным материалом, понимание сущности			
	рассматриваемых процессов и явлений, умение самостоятельно обозначить			
	проблемные ситуации в организации научных исследований, способность			
Зачтено критически анализировать и сравнивать существующие подходы и				
	к оценке результативности научной деятельности, свободное владение			
	источниками, умение четко и ясно излагать результаты собственной			
	работы, следовать нормам, принятым в научных дискуссиях.			
	непонимание смысла ключевых проблем, недостаточное владение			
	науковедческой терминологией, неумение самостоятельно обозначить			
Не	проблемные ситуации, неспособность анализировать и сравнивать			
зачтено	существующие концепции, подходы и методы, неумение ясно излагать			
	результаты собственной работы, следовать нормам, принятым в научных			
	дискуссиях.			

5.2. Примеры типовых контрольных заданий или иных материалов, используемых для оценивания результатов обучения по дисциплине

- 1. Уравнение баланса частиц в разряде.
- 2. Уравнение баланса энергии в разряде.
- 3. Вероятности многофотонной и туннельной ионизации.
- 4. Величина пробойного поля при заданных параметрах газа и разрядного промежутка.
 - 5. Инкремент плазменно-резонансной неустойчивости однородного разряда.
 - 6. Ионизационно-полевая неустойчивость пространственно-ограниченного разряда.
 - 7. Ионизационно-перегревная неустойчивость.
 - 8. Дисперсионное уравнение для волн в плазменном слое.
 - 9. Резонансное и ударное возбуждение плазменных колебаний.
 - 10. Механизмы генерации терагерцового излучения при оптическом пробое газа.
- 11. Механизмы генерации вакуумного ультрафиолетового и мягкого рентгеновского излучения при оптическом пробое газа.
- 12. Псевдоспектральный метод численного решения нестационарного уравнения Шредингера.
 - 13. Быстрое преобразование Фурье.
 - 14. Дискретное преобразование Ханкеля.
 - 15. Квантовомеханические модели пониженной размерности.
- 16. Алгоритмы распараллеливания при численном решении системы уравнений Максвелла-Шредингера на многопроцессорных вычислительных системах.

6. Учебно-методическое и информационное обеспечение дисциплины.

- а) Основная литература
- 1. Райзер Ю. П. Физика газового разряда. Долгопрудный: Интеллект, 2009. 736 с.
- 2. Делоне, Н.Б. Нелинейная ионизация атомов лазерным излучением. [Электронный ресурс] / Н.Б. Делоне, В.П. Крайнов. Электрон. дан. М.: Физматлит, 2001. 320 с. Режим доступа: http://e.lanbook.com/book/59287 Загл. с экрана.
- 3. Юнаковский А. Д. Начала вычислительных методов для физиков. Н. Новгород: ИПФ РАН, 2007. 220 с.
 - б) Дополнительная литература
- 1. Введенский Н. В., Рябикин М. Ю., Силаев А. А. Квантовомеханические модели пониженной размерности для численных исследований ионизационных явлений в интенсивных электромагнитных полях: Учебно-методическое пособие. Н.Новгород: Нижегородский госуниверситет, 2014. 33 с.
 - в) Программное обеспечение и Интернет-ресурсы
- 1. Microsoft Office (номера лицензий: 62421356 (12 шт.), 62421349);
- 2. Электронно-библиотечные системы (электронная библиотека): http://e.lanbook.com/; http://www.biblioclub.ru.

7. Материально-техническое обеспечение дисциплины

- помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для хранения и профилактического обслуживания оборудования и помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду ННГУ;
- материально-техническое обеспечение, необходимое для реализации дисциплины, включая лабораторное оборудование;
 - лицензионное программное обеспечение: Windows, Microsoft Office;
- обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

ресурсам.

Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, Положением о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Постановление Правительства РФ от 30.11.2021 № 2122), Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Приказ Минобрнауки РФ от 20.10.2021 № 951).

Авторы:

Авторы Н.В. Введенский

Рецензент(ы) В.Г. Гавриленко

Заведующий кафедрой электродинамики А.В. Кудрин

Программа одобрена на заседании Методической комиссии Института /факультета от «02» декабря 2024 года, протокол № 10.