МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДЕНО решением ученого совета ННГУ протокол от" "_____ 2024 г. №

Рабочая программа дисциплины «Современные проблемы Спинтроники»

Уровень высшего образования Подготовка научных и научно-педагогических кадров

Программа аспирантуры **1.3.11. Физика полупроводников**

Научная специальность 03.06.01 ФИЗИКА И АСТРОНОМИЯ

Форма обучения **Очная**

Нижний Новгород 2024 год

1. Место и цель дисциплины в структуре ОПОП

Дисциплина «Современные проблемы спинтроники» относится к числу элективных дисциплин образовательного компонента программы аспирантуры и изучается на 2 году обучения в 3 семестре.

Цель дисциплины «Спинтроника» состоит в том, чтобы дать аспирантам основные понятия и представления о спинтронике, новом быстроразвивающемся направлении науки и техники, находящемся на стыке микроэлектроники, оптоэлектроники и магнетизма. В приборах спинтроники для достижения более высоких, чем в традиционных приборах электроники, характеристик процесса обработки информации используется, кроме заряда носителей тока, также спиновая степень свободы электрона.

Планируемые результаты обучения по дисциплине

Выпускник, освоивший программу, должен

Знать:

- методологию теоретических и экспериментальных исследований в области спинтроники.
- культуру научного исследования, в том числе с использованием новейших информационно-коммуникационных технологий
- как провести физический эксперимент в области спинтроники.

VMeth

- разбираться в теоретических и экспериментальных исследованиях в области спинтроники.
- разбираться в научных исследованиях, в том числе с использованием новейших информационно-коммуникационных технологий
- осуществить обработку и анализ его результатов с использованием современных методов документирования экспериментальных данных.

Владеть:

П Э

- методологией теоретических и экспериментальных исследований в области спинтроники.
- культурой научного исследования, в том числе с использованием новейших информационно-коммуникационных технологий.
- современными методами обработки экспериментальных данных (в том числе больших массивов экспериментальных данных) и/или современными методами численного моделирования сложных физических процессов.

3. Структура и содержание дисциплины.

Объем дисциплины (модуля) составляет 2 з.е., всего - 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа – 36 часов, семинарского типа), 36 часов составляет самостоятельная работа обучающегося.

Структура дисциплины

Таблица 2

		В том числе Контактная работа, часов						
Наименование раздела дисциплины	Всего, часов	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Консультации	Beero	Самостоятельная работа обучающегося, часов	
Тонятие спина электрона	4	2				2	2	
Эффекты с участием спина	8	4				4	4	
Магнетизм атомов	8	4				4	4	

Магнитные характеристики	8	4	4	4
материалов. Диамагнетики,				
парамагнетики, ферромагнетики				
Разбавленные магнитные	8	4	4	4
полупроводники. Магнетизм				
наночастиц				
Аномальный и спиновый эффекты	8	4	4	4
Холла				
Оптическая ориентация	2	1	1	1
Спиновая инжекция	2	1	1	1
Механизмы спиновой релаксации	8	4	4	4
Спиновый клапан	8	4	4	4
Приборы спинтроники (спиновые	8	4	4	4
транзистор, светодиод)				
Промежуточная аттестация:	Зачет			·

Итого	72	36		36	36

Таблица 3

Содержание дисциплины

No	Наименование	-	Форма	Форма
п/п	раздела	Содержание раздела	проведения	текущего
1.	дисциплины Понятие	Иотория поррития опинтромики Спин	Занятия	контроля* зачёт
1.		История развития спинтроники. Спин	Лекции	зачет
	спина	электрона, гиромагнитное отношение.		
	электрона	Опыт Штерна и Герлаха. Магнетон Бора и		
	n 1 1	ядерный магнетон.		
2.	Эффекты с	Энергия магнитного диполя во внешнем	Лекции	зачёт
	участием	магнитном поле. Взаимодействие между		
	спина	спинами; сравнение энергии спин-		
		спинового взаимодействия с тепловой		
		энергией при температуре Т.		
		Ларморовская частота, прецессия		
		магнитного момента в магнитном поле,		
		эффект Зеемана. Спин-орбитальное		
		взаимодействие.		
3.	Магнетизм	Спиновый и орбитальный магнетизм атома	Лекции	зачёт
	атомов	водорода. Магнетизм многоэлектронных		
		атомов. Электроны в атомах переходных		
		элементов.		
4.	Магнитные	Определения – магнитная	Лекции	зачёт
	характеристи	восприимчивость, относительная и		
	ки	абсолютная магнитная проницаемость.		
	материалов.	Диамагнетизм орбитального движения		
	Диамагнетик	электронов в атомах. Диамагнетизм		
	И,	Ландау в металлах. Парамагнетизм спинов		
	парамагнетик	электронов. Вывод закона Кюри для		
	И,	невзаимодействующих электронов.		
	ферромагнет	Парамагнетизм Паули.		
	ики	Зонная структура переходных металлов:		
		сравнение для меди и никеля.		
		Гейзенберговский обменный		
		гамильтониан, обменный интеграл и		

	T		1	Т
		случаи ферромагнетизма и		
		антиферромагнетизма. Приближение		
		молекулярного поля Вейсса, закон Кюри-		
		Вейсса. Доменная структура и стенки		
		Блоха. Энергия анизотропии.		
		Коэрцитивная сила и гистерезис.		
5.	Разбавленные	Магнитные разбавленные	Лекции	зачёт
	магнитные	полупроводники. Фазовая диаграмма для		
	полупроводн	выращивания GaMnAs. Магнитные		
	ики.	свойства, типичные значения температуры		
	Магнетизм	Кюри для слоев GaMnAs, нанесенных		
	наночастиц	методом молекулярно-лучевой эпитаксии.		
		Магнетизм малых частиц. Зависимость		
		коэрцитивного поля от размеров частиц.		
		Суперпарамагнетизм.		
6.	Аномальный	Внешний и внутренний спиновый эффект	Лекции	зачёт
	и спиновый	Холла. Изменение направлений спина во		
	эффекты	внешних магнитном и электрическом		
	Холла	полях. Расчет спинового тока в спиновом		
		эффекте Холла. Экспериментальные		
		наблюдения спинового эффекта Холла.		
		Аномальный эффект Холла в		
		ферромагнетиках. Анализ результатов		
		измерения эффекта Холла (аномального		
		эффекта Холла) для получения		
		информации об электронной и магнитной		
		подсистемах разбавленного магнитного		
		полупроводника.		
7.	Оптическая	Правила отбора при излучении и	Лекции	зачёт
	ориентация	поглощении света атомом. Описание		
		состояний электрона в зонах GaAs (зона		
		проводимости, зоны легких и тяжелых		
		дырок, спин-отщепленная зона). Правила		
		отбора при межзонных переходах в GaAs		
		вблизи $\vec{k} = 0$. Расчет относительных		
		интенсивностей межзонных переходов при		
		поглощении циркулярно-поляризованного		
		света. Спиновая поляризация		
		возбужденных электронов. Спиновая		
		поляризация в стационарном состоянии;		
		случаи полупроводников р- и п-типа.		
		Эффект Ханле. Экспериментальные		
		данные для GaSb и GaAs.		
8.	Спиновая	Качественное рассмотрение спиновой	Лекции	зачёт
0.	инжекция	инжекции из ферромагнитного (Ф) в	лекции	
	инискции	нормальный (Н) металл. Эксперимент		
		Джонсона-Силсби со структурой Ф-Н-Ф,		
		эффект Ханле в этой структуре. Зонная		
		диаграмма структуры Ф-Н-Ф.		
		Феноменологическое описание инжекции		
		спина в системе Ф-Н. Стандартная		
		(диффузионная) модель спиновой]	

	T			1
		инжекции в системе Ф-Н. Формулы Ван		
		Сона для спиновой поляризации тока на		
		границе Ф-Н. Проблема рассогласования		
		проводимостей. Спиновая инжекция в		
		системе металл/полупроводник.		
9.	Механизмы	Спиновая релаксация и спиновая	Лекции	зачёт
	спиновой	дефазировка. Основные механизмы		
	релаксации	спиновой релаксации. Механизм		
		Эллиотта-Яфета. Механизм Дьяконова-		
		Переля. Механизм Бира-Аронова-Пикуса.		
		Механизм, связанный со сверхтонким		
		взаимодействием. Зависимости времени		
Ī		спиновой релаксации от температуры для		
		указанных механизмов.		
10.	Спиновый	Эффект гигантского	Лекции	зачёт
	клапан	магнетосопротивления в трехслойной	,	
		структуре Ф-Н-Ф. Технология		
		изготовления спинового клапана.		
		Четырехслойные структуры, роль		
		антиферромагнитного слоя. Эффекты		
		туннельного магнетосопротивления.		
		Системы памяти с произвольным		
		доступом на основе спиновых клапанов.		
11.	Приборы	Концепция спинового полевого	Лекции	зачёт
	спинтроники	транзистора Датты-Дэса. Время жизни	· ·	
	(спиновые	спина в проводящем канале. Принцип		
	транзистор,	контроля затвором в спиновом		
	светодиод)	транзисторе. Трудности в реализации		
		спинового транзистора и пути их		
		преодоления. Принцип работы спинового		
		свето-излучающего диода. Схемы свето-		
		излучающих диодов с эмиттером в виде		
		ферромагнитного полупроводника п-типа		
		и р-типа. Приемы вывода излучения.		
		Зависимость поляризационных		
		характеристик диодов при варьировании		
		температуры измерений, толщины		
		спейсера, способа приложения магнитного		
		поля. Зенеровский туннельный диод.		
		поля. Зенеровскии туннельныи диод.		

4. Формы организации и контроля самостоятельной работы обучающихся

Во время самостоятельной работы аспиранты изучают методологию теоретических и экспериментальных исследований в области спинтроники, культуру научного исследования, в том числе с использованием новейших информационно-коммуникационных технологий, изучают как подготовить и провести физический эксперимент в области физики твердотельных материалов и физики наноструктур, осуществить обработку и анализ его результатов.

5. Фонд оценочных средств для аттестации по дисциплине

5.1. Критерии и процедуры оценивания результатов обучения по дисциплине.

При выполнении всех работ учитываются следующие основные критерии:

- уровень теоретических знаний (подразумевается не только формальное воспроизведение информации, но и понимание предмета, которое подтверждается правильными ответами на дополнительные, уточняющие вопросы, заданные членами комиссии);
- умение использовать теоретические знания при анализе конкретных проблем, ситуаций;
- качество изложения материала, то есть обоснованность, четкость, логичность ответа, а также его полнота (то есть содержательность, не исключающая сжатости);
 - способность устанавливать внутри- и межпредметные связи,
- оригинальность мышления, знакомство с дополнительной литературой и другие факторы.

Описание шкалы оценивания на промежуточной аттестации в форме зачета

Оценка	Уровень подготовленности, характеризуемый оценкой					
Зачтено	владение программным материалом, понимание сущности рассматриваемых процессов и явлений, умение самостоятельно обозначить проблемные ситуации в организации научных исследований, способность критически анализировать и сравнивать существующие подходы и методы к оценке результативности научной деятельности, свободное владение источниками, умение четко и ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					
Не зачтено	непонимание смысла ключевых проблем, недостаточное владение науковедческой терминологией, неумение самостоятельно обозначить проблемные ситуации, неспособность анализировать и сравнивать существующие концепции, подходы и методы, неумение ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					

5.2. Примеры типовых контрольных заданий или иных материалов, используемых для оценивания результатов обучения по дисциплине

- 1. Определение спинтроники. Принцип работы спинового клапана.
- 2. Спин электрона, магнитомеханическое отношение. Опыт Штерна и Герлаха. Магнетон Бора и ядерный магнетон.
- 3. Энергия магнитного момента в магнитном поле, энергия диполь-дипольного (спинспинового) взаимодействия. Классическое объяснение эффекта Зеемана.
- 4. Магнетизм одноэлектронного атома.
- 5. Строение электронных оболочек атомов переходных элементов (главное, орбитальное, магнитное квантовые числа и спин, электронная конфигурация).
- 6. Описание зоны проводимости и валентных подзон GaAs, соответствующие им значения проекции полного момента. Спин-отщепленная зона.
- 7. Правила отбора при излучении и поглощении света атомом. Описание состояний электрона в зонах GaAs (зона проводимости, зоны легких и тяжелых дырок, спинотщепленная зона). Правила отбора при межзонных переходах в GaAs вблизи \vec{k} =0. Матричные элементы дипольного момента. Расчет относительных интенсивностей межзонных переходов при поглощении циркулярно-поляризованного света. Спиновая поляризация возбужденных электронов.

- 8. Циркулярно-поляризованная фотолюминесценция (ЦП ФЛ) как способ регистрации спиновой поляризации электронов в полупроводниках. Степень циркулярной поляризации ФЛ, ее зависимость от энергии квантов возбуждающего ЦП света.
- 9. Спиновая поляризация в стационарном состоянии при поглощении циркулярнополяризованного света; случаи полупроводников *p*-и *n*-типа.
- 10. Качественное рассмотрение спиновой инжекции из ферромагнитного (Ф) в нормальный (Н) металл. Зонная диаграмма структуры Ф-Н-Ф.
- 11. Феноменологическое описание инжекции спина в системе Ф-Н. Проблема рассогласования проводимостей.
- 12. Концепция спинового полевого транзистора Датта-Даса. Принцип контроля затвором в спиновом транзисторе; фазовый сдвиг для длины канала *L*. Трудности в реализации спинового транзистора и пути их преодоления.
- 13. Принцип работы спинового светоизлучающего диода. Приемы вывода излучения.
- 14. Магнитные разбавленные полупроводники. Фазовая диаграмма для выращивания GaMnAs. Магнитные свойства, типичные значения температуры Кюри для слоев GaMnAs, нанесенных методом молекулярно-лучевой эпитаксии.
- 15. Основные механизмы спиновой релаксации. Механизм Эллиотта-Яфета в полупроводниках.
- 16. Механизм Дьяконова-Переля.
- 17. Механизм Бира-Аронова-Пикуса.
- 18. Определения магнитная восприимчивость, относительная и абсолютная магнитная проницаемость. Связь между этими характеристиками. Магнитная индукция, единицы измерения. Классификация магнетиков.
- 19. Диамагнетизм орбитального движения электронов в атомах; классический вывод формулы для магнитной восприимчивости. Диамагнетизм Ландау в металлах.
- 20. Парамагнетизм спинов электронов. Вывод закона Кюри для невзаимодействующих электронов. Парамагнетизм Паули.
- 21. Обменное взаимодействие, обменный интеграл и случаи ферромагнетизма и антиферромагнетизма.
- 22. Примеры ферромагнетиков, антиферромагнетиков и ферримагнетиков. Приближение молекулярного поля Вейсса, закон Кюри-Вейсса.
- 23. Доменная структура и стенки Блоха. Энергия анизотропии. Коэрцитивное поле и гистерезис.
- 24. Аномальный эффект Холла в магнетиках. Определение характеристик материала из зависимости $R_H(B)$.
- 25. Магнетизм малых частиц. Зависимость коэрцитивного поля от размеров частиц. Однодоменные частицы
- 26. Суперпарамагнетизм. Температура блокировки.
- 27. Современные устройства на основе спинового клапана. Принцип функционирования MRAM.

6. Учебно-методическое и информационное обеспечение дисциплины.

- а) основная литература:
 - 1) Аплеснин С.С. Основы спинтроники. С-Пб: Лань, 2010. 288 с.
- 2) Кравченко А.Ф. Магнитная электроника. Новосибирск: Изд-во СОРАН, 2002. 400с.
- б) дополнительная литература:
 - 1) С.В. Вонсовский «Магнетизм». «Наука», М., **1971**, 1032 с.
 - 2) Г.С. Кринчик «Физика магнитных явлений». Изд-во Моск.ун-та, 1985, 336 с.
 - 3) Э.Л. Нагаев «Физика магнитных полупроводников». «Наука», М., 1979, 431 с.
 - 4) «Оптическая ориентация» под ред. Б.П. Захарчени, Ф. Майера. «Наука», Л., 1989, $408~\mathrm{c}$.

- 5) В.Я. Демиховский «Низкоразмерные структуры спинтроники». Нижний Новгород: Изд-во ННГУ, 2007, 126 с.
- 6) Б.П. Захарченя, В.Л. Коренев. Интегрируя магнетизм в полупроводниковую электронику УФН, 2005, т.175, в.6, с.629-635.
- 7) А. Ферт. Происхождение, развитие и перспективы спинтроники УФН, 2008, т.178, в.12, с.1336-1348.
- 8) П.А. Грюнберг. От спиновых волн к гигантскому магнетосопротивлению и далее УФН, 2008, т.178, в.12, с.1349-1358.

в) Интернет-ресурсы

Для углубленного изучения вопросов спинтроники рекомендуется чтение обзорных и оригинальных статей в журналах, имеющихся в открытом доступе для ННГУ:

- 1. Физика и техника полупроводников: http://journals.ioffe.ru/ftp/
- 2. Физика твердого тела: http://journals.ioffe.ru/ftt/
- 3. Успехи физических наук: http://www.ufn.ru/
- 4. Physical Review B: http://prb.aps.org/
- 5. Journal of Applied Physics: http://jap.aip.org/
- 6. Journal of Physics D: Applied Physics: http://iopscience.iop.org/0022-3727

Книга Аплеснина С.С. (Основы спинтроники. С-Пб: Лань, 2010. 288 с.) имеется в режиме чтения в доступе с компьютеров сети ННГУ по адресу http://e.lanbook.com/.

7. Материально-техническое обеспечение дисциплины

- помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для хранения и профилактического обслуживания оборудования и помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду ННГУ;
- материально-техническое обеспечение, необходимое для реализации дисциплины, включая лабораторное оборудование;
 - лицензионное программное обеспечение: Windows, Microsoft Office;
- обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

ресурсам.

Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, Положением о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Постановление Правительства РФ от 30.11.2021 № 2122), Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Приказ Минобрнауки РФ от 20.10.2021 № 951).

Автор (ы) к.фм.н., с.н.с	Ю. А. Данилов
D	
Рецензент (ы)	

Заведующий кафедрой д.фм.н., профессор	Д. А. Павлов
Программа одобрена на заседании методической комиссии ф2022 года, протокол № б/н	изического факультета от