МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический	факультет
PH3H4CCKHH	Wakviibici

УТВЕРЖДЕНО

решением ученого совета ННГУ (протокол от 30 ноября 2022 г. № 13)

Рабочая программа дисциплины

Применение численных методов в физике

Уровень высшего образования бакалавриат

Направление подготовки / специальность 09.03.02 Информационные системы и технологии

Направленность образовательной программы Информационные системы и технологии в физических исследованиях

Форма обучения ОЧНАЯ

Год начала подготовки

2023 год

Нижний Новгород

2022 год

1. Место дисциплины в структуре ООП

Дисциплина «Применение численных методов в физике» (Б1.В.06) относится к части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)» учебного плана основной образовательной программы.

Дисциплина преподается в 4 семестре.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Планируемые результаты обучения по дисциплине (модулю), в соответствии с индикатором достижения компетенции			Наименование оценочного средства	
компетенции	Индикатор	Индикатор Результаты обучения		
(код, содержание	достижения	по дисциплине		
компетенции)	компетенции			
	(код, содержание индикатора)			
ПК-14. Способен	ПК-14.1. Знать	Знать основные свойства физических	Собеседование	
обосновывать	основные методы	моделей, терминологию, взаимосвязь		
правильность	обработки и	модели и физических законов, с помощью		
выбранной модели,	сравнения	которых модель описывается.		
сопоставляя	результатов	1		
результаты	экспериментальных			
экспериментальных	данных и			
данных и	полученных			
полученных	решений.			
решений в области	ПК-14.2. Уметь	<i>Уметь</i> применять методы моделирования,	Практическая	
применения	обосновывать	тестирования результатов.	задача	
информационных	правильность			
технологий в	выбранной модели.			
физических	ПК-14.3. Владеть	Владеть численными методами для	Практическая	
исследованиях и	опытом выбора и	реализации разрабатываемых моделей.	задача	
смежных областях	обоснования			
	правильности			
	выбранной модели,			
	сопоставления			
	результатов			
	экспериментальных			
	данных и			
	полученных			
	решений.			

3. Структура и содержание дисциплины

3.1. Трудоемкость дисциплины

Очная форма обучения		
Общая трудоемкость	3 3ET	
Часов по учебному плану	108	
в том числе		

аудиторные занятия (контактная работа):	49
- занятия лекционного типа, ч	16
- практические занятия, ч	32
- зачет, ч	1
самостоятельная работа, ч	59
Промежуточная аттестация	зачет с оценкой

3.2. Содержание дисциплины

Наименование и краткое содержание разделов и тем дисциплины (модуля),	Всего (часы)	В том числе Контактная работа (работа во взаимодействии с преподавателем), час из них				абота,
(модуля),		Занятия лекционного типа	Практические занятия	Занятия лабораторного типа	Всего	Самостоятельная работа, часы
1. Введение в дисциплину	3	1	-	-	1	2
2. Этапы построения и реализации физических моделей. Сдача допуска по выбранной задаче.	21	3	2	-	9	12
3. Физическая постановка задачи. Математическая постановка задачи. Составление дифференциальных уравнений, описывающих движение классических частиц.	20	4	6	-	10	10
4. Этапы программирования. Выбор параметров модели, начальных и граничных условий.	14	2	4	-	6	8
5. Визуализация результатов расчетов методом мультипликации.	14	2	4	-	6	8
6. Тестирование задачи и сравнение с результатами реальных движений.	16	2	6	-	8	8
7. Оформление результатов в виде отчета. Сдача задачи и отчета по ней.	19	2	4 2	-	8	11
Зачет	1	-	-	-	1	-
<u>Итого</u>	108	16	32	-	49	59

Содержание разделов дисциплины

- 1. Введение в дисциплину. Историческая справка. Примеры физических моделей. Возможности и ограничения моделирования.
- 2. Этапы построения и реализации физических моделей. Сбор информации о явлении (процессе). Постановка задачи и обоснование возможности ее решения. Разработка алгоритма. Программирование. Тестирование. Оформление документации.
- 3 Физическая постановка задачи. Запись физических законов, формул применительно к рассматриваемой задаче. Выбор системы отсчета, системы единиц. Аналитическая оценка ожидаемых результатов моделирования.
- 4. Математическая постановка задачи. Выбор и обоснование методов численного решения задачи. Оценка потребности вычислительных ресурсов.
- 5. Составление дифференциальных уравнений, описывающих движение классических частиц. Примеры для описания движения частиц в гравитационном поле: движение спутников и планет; колебательные движения с одной и несколькими степенями свободы.
- 6. Этапы программирования. Разработка алгоритма. Составление программы на алгоритмическом языке высокого уровня. Задание параметров модели. Задание начальных и граничных условий.
- 7. Визуализация результатов расчетов методом мультипликации: пример программирования на языке Visual C++.
- 8. Тестирование задачи и сравнение с результатами реальных движений. Примеры движения спутников и планет. Теоретический расчет периодов некоторых колебательных движений.
- 9. Оформление результатов в виде отчета. Титульный лист. Постановка задачи. Основные физические и математические формулы. Результаты тестирования в виде таблиц, диаграмм, графиков. Оформление графического материала. Выводы. Список литературы.

Задания для выполнения в терминал-классе.

Задания подобраны в соответствие с материалами курса «Общая физика» по темам «Движение в гравитационном поле» и «Механические колебания», и с курсом «Дифференциальные уравнения».

- 1. Затяжной прыжок парашютиста
- 2. Подъем воздушного шара в стратосферу
- 3. Вертикальный полет ракеты
- 4. Движения шара с учетом сопротивления воздуха
- 5. Движения артиллерийских снарядов в реальных условиях
- 6. Стрельба из дальнобойного орудия
- 7. Удар на поле для гольфа
- 8. Шарик подо льдом
- 9. Полет тактической неуправляемой ракеты
- 10. Демонстрация эффекта Магнуса
- 11. Крученый удар
- 12. Проверка второго закона Кеплера
- 13. Проверка третьего закона Кеплера

- 14. Моделирование силы «гравитационного» взаимодействия, не пропорциональной обратному квадрату
- 15. Моделирование движения двух планет вокруг Солнца
- 16. Движение одной планеты в поле тяготения двух звезд
- 17. Влияние Солнца и Луны на движение ИСЗ
- 18. Запуск с Земли спутника на орбиту вокруг Луны
- 19. Влияние «солнечного ветра» на движение спутника вокруг Земли
- 20. Маневрирование космического корабля на орбите
- 21. Спуск космического корабля с орбиты с учетом земной атмосферы
- 22. Торможение спутника в верхних слоях атмосферы
- 23. Запуск космического спутника одноступенчатой ракетой-носителем на заданную эллиптическую орбиту
- 24. Запуск баллистической ракеты
- 25. Пружинный маятник
- 26. Доска на катках
- 27. Контур с индуктивностью в магнитном поле
- 28. Земной маятник
- 29. Математический маятник при больших углах отклонения
- 30. Груз на пружинке в горизонтальной плоскости
- 31. Пружинный математический маятник
- 32. Двумерный осциллятор на 2-х пружинках
- 33. Двумерный осциллятор на 4-х пружинках
- 34. Связанные осцилляторы: продольные колебания
- 35. Связанные осцилляторы: поперечные колебания
- 36. Двойной маятник
- 37. Параметрический резонанс
- 38. Конический маятник
- 39. Маятник Фуко
- 40. Столкновение шайб
- 41. Зайцы лисы

Текущий контроль успеваемости реализуется в рамках занятий в компьютерном классе.

Промежуточная аттестация проходит в традиционной форме - зачет с оценкой.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

4.1. Самостоятельная внеаудиторная работа студентов осуществляется в следующих формах:

- 1. Работа с лекциями, основной и дополнительной литературой, другими источниками, найденными в поисковых системах Интернета. Такая работа необходима для выполнения индивидуальных практических заданий и для подготовки к зачету.
- 2. Использование профессиональных прикладных программ для составления собственной программы расчетов на одном из алгоритмических языков высокого уровня, её предварительного тестирования с помощью одной из программ аналитических вычислений, визуализации и тестирования результатов расчетов.
- 3. Предполагается, что каждый студент имеет дома персональный компьютер с выходом в Интернет и набор необходимых прикладных программ.
- 4. Работа со средствами телекоммуникации, в том числе электронной почтой, телеконференциями, Интернетом и т.д.
- 5. Использование электронных библиотек, распределенных и централизованных издательских систем.

4.2. Порядок выполнения и контроля самостоятельной работы

- 1. Получение индивидуальных практических заданий.
- 2. Разработка алгоритма и составление программы на алгоритмическом языке высокого уровня. Контроль демонстрация работы программы в компьютерном классе.
- 3. Тестирование программы, выполнение пунктов заданий.

Контроль – сдача задачи в компьютерном классе путем демонстрации работы программы, а также сдача отчета по задаче в распечатанном виде.

4.3. Учебно-методическое обеспечение самостоятельной работы

Практические задания для студентов собраны в методическом пособии: Васин А.С. Применение численных методов к моделированию физических процессов: Практикум. — 2-е изд. исправл. и доп. — Нижний Новгород: Нижегородский госуниверситет, 2021. 44 с.

В нем приведены тексты вышеперечисленных задач, основные формулы численного решения дифференциальных уравнений, даны методические указания по разработке алгоритма и программы, требования при сдаче выполненного задания преподавателю, требования и рекомендации по составлению отчета по работе.

Типовые примеры заданий из этого пособия приведены в п. 5.2.2 настоящей программы. Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведены в п. 5.2.1.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень сформирован	Шкала оценивания сформированности компетенций						
ности компетенций (индикатора достижения компетенций)	плохо Не за	неудовлетво рительно чтено	удовлетвори тельно	хорошо	очень хорошо Зачтено	ончисто	превосходно
Знания	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту знаний вследствие отказа обучающегос я от ответа	Уровень знаний ниже минимальны х требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответствую щем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающе м программу подготовки.
<u>Умения</u>	Отсутствие минимальны х умений. Невозможнос ть оценить наличие умений вследствие отказа	При решении стандартных задач не продемонстр ированы основные умения. Имели место грубые	Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками.	Продемонстри рованы все основные умения. Решены все основные задачи с негрубыми ошибками.	Продемонстри рованы все основные умения. Решены все основные задачи. Выполнены все задания, в	Продемонстр ированы все основные умения, решены все основные задачи с отдельными несуществен	Продемонстр ированы все основные умения,. Решены все основные задачи. Выполнены все задания,

	обучающегос	ошибки.	Выполнены	Выполнены все	полном	ным	в полном
	я от ответа		все задания	задания, в	объеме, но	недочетами,	объеме без
			но не в	полном	некоторые с	выполнены	недочетов
			полном	объеме, но	недочетами.	все задания в	
			объеме.	некоторые с		полном	
				недочетами.		объеме.	
<u>Навыки</u>	Отсутствие	При решении	Имеется	Продемонстри	Продемонстри	Продемонстр	Продемонстр
	владения	стандартных	минимальны	рованы	рованы	ированы	ирован
	материалом.	задач не	й набор	базовые	базовые	навыки при	творческий
	Невозможнос	продемонстр	навыков для	навыки при	навыки при	решении	подход к
	ть оценить	ированы	решения	решении	решении	нестандартн	решению
	наличие	базовые	стандартных	стандартных	стандартных	ых задач без	нестандартн
	навыков	навыки.	задач с	задач с	задач без	ошибок и	ых задач.
	вследствие		некоторыми	некоторыми	ошибок и	недочетов.	
	отказа	Имели место	недочетами	недочетами	недочетов.		
	обучающегос	грубые					
	я от ответа	ошибки.					

Шкала оценки при промежуточной аттестации

Оценка		Уровень подготовки
	Превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно»
зачтено	Отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично», при этом хотя бы одна компетенция сформирована на уровне «отлично»
	Очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо», при этом хотя бы одна компетенция сформирована на уровне «очень хорошо»
	Хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо», при этом хотя бы одна компетенция сформирована на уровне «хорошо»
	Удовлетворительно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»
не зачтено	Неудовлетворительно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно», ни одна из компетенций не сформирована на уровне «плохо»
	Плохо	Хотя бы одна компетенция сформирована на уровне «плохо»

5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения

5.2.1 Контрольные вопросы

Вопросы для сдачи допусков. В каждой задаче вопросы индивидуальны. Вместе с тем, имеется некоторое количество общих вопросов.

Вопросы	Код формируемой
	компетенции
1. Выбор системы координат для описания движения.	ПК-14.1
2. Запись основных физических законов, описывающих движение.	ПК-14.1
3. Преобразование их к системе дифференциальных уравнений.	ПК-14.1
	ПК-14.2
4. Начальные и граничные условия.	ПК-14.2
5. Методы численного решения дифференциальных уравнений.	ПК-14.2
	ПК-14.3
6. Выбор физических параметров движения.	ПК-14.2
	ПК-14.3
7. Выбор шага по времени.	ПК-14.2
	ПК-14.3
8. Проверка законов сохранения энергии, импульса, момента	ПК-14.1
импульса.	
9. Интерфейс программы.	ПК-14.2
	ПК-14.3
10. Способы проверки правильности работы программы.	ПК14.3

5.2.2. Типовые тестовые задания для оценки сформированности компетенций

No	Задание	Перечень
		компетенций
1	13. Проверка третьего закона Кеплера для эллиптических орбит. Третий закон Кеплера формулируется так: «Для всех планет, вращающихся вокруг Солнца, отношение T^2 / a^3 одинаково (T — период обращения, a — большая полуось эллипса)». Для его проверки смоделировать движение спутника вокруг Земли, пренебрегая воздействием всех других небесных тел. Подобрать начальные координаты и начальную скорость спутника так, чтобы получилось несколько разных эллиптических орбит. Для каждой орбиты определить полную энергию, момент импульса L_z , большую и малую полуоси, эксцентриситет ($e = \sqrt{1 - \frac{b^2}{a^2}}$), период обращения. Проверить постоянство отношения T^2 / a^3 . Показывать Землю и траекторию движения спутника.	ПК-14.1 ПК-14.2 ПК-14.3
2	16. Моделирование движения одной планеты в поле тяготения двух неподвижных звезд одинаковой массы. Смоделировать движение планеты, подобной Земле, в поле	ПК-14.1 ПК-14.2 ПК-14.3

тяготения двух неподвижных звезд. В этом случае никаких замкнутых орбит не существует, но все орбиты можно разделить на устойчивые и неустойчивые. Устойчивыми орбитами могут быть открытые петли, охватывающие обе звезды, орбиты в виде восьмерки или кеплеровские орбиты вокруг только одной звезды. В случае неустойчивых орбит планета, в конце концов, упадет на одну из звезд.

Исследовать возможные орбиты в зависимости от начального положения и начальной скорости планеты, а также от соотношения масс между звездами. Подобрать не менее 8 различных начальных условий для планеты, приводящих к наиболее интересным орбитам.

Можно выбрать массы звезд не сильно отличающиеся от массы Солнца, а расстояние между ними взять равным большой оси земной орбиты.

3 25. Пружинный маятник.

ПК-14.1 ПК-14.2 ПК-14.3

Смоделировать движение тела массы m, скользящего под действием 2-х одинаковых невесомых пружин с жесткостью k по гладкой горизонтальной поверхности (рис.4). В равновесии пружины не деформированы.

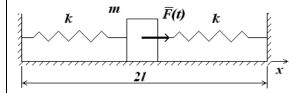


Рис. 9. Одномерный пружинный маятник.

- а) Определить период колебаний при заданных числовых значениях k и m, сравнить его с теоретически полученным. Рассмотреть 2 вида начальных условий:
- 1 тело начинает движение из смещенного положения с нулевой начальной скоростью;
- 2 тело начинает движение из положения равновесия с заданной начальной скоростью.
- б) Исследовать колебания при постоянной силе трения скольжения.
- в) Ввести коэффициент вязкого трения β и исследовать затухающие колебания (считать, что сила вязкого трения пропорциональна скорости). Определить логарифмический декремент затухания и сравнить его с теоретически полученным.
- г) При наличии вязкого трения задать периодическую вынуждающую силу $F = F_0 \cdot \sin(\omega t)$. Подобрать F_0 такой величины, чтобы можно было проследить установление вынужденных колебаний. Исследовать зависимость амплитуды вынужденных колебаний от частоты ω вынуждающей силы. Определить резонансную частоту ω_{pe3} и сравнить ее с теоретической.

Показывать процесс колебаний в виде мультфильма. Выводить график x(t).

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Васин А.С. Применение численных методов к моделированию физических процессов: Практикум. 2-е изд. исправл. и доп. Нижний Новгород: Нижегородский госуниверситет, 2021. 44 с.
- 2. Фаддеев М.А., Марков К.А. Численные методы: Учебное пособие Н. Новгород: ННГУ, $2005.-156\ c.$
- 3. Сивухин Д.В. Общий курс физики. Механика. М.: Наука. Издания разных лет.
- 4. Муравьев В.А., Бурланков Д.Е. Практическое введение в пакет MATHEMATICA: Учебное пособие. Н. Новгород: ННГУ. Издания 2000, 2010 гг.

б) дополнительная литература:

- 1. Гулд Х., Тобочник Я. Компьютерное моделирование в физике. Т. 1. М.: Мир, 1990.
- 2. Юнаковский А.Д. Начала вычислительных методов для физиков. Н. Новгород: ИПФРАН, 2007. 220 с.
- 3. Кунин С. Вычислительная физика. M.: Мир, 1992. 518 с.

в) программное обеспечение и Интернет-ресурсы:

- 1. Пакет MicrosoftVizual C++ в среде Microsoft Visual Studio., установленный в компьютерном классе.
- 2. Пакет компьютерных аналитических и графических вычислений для персонального компьютера. Допускается применение сред Wolfram Mathematica (имеется в компьютерном классе), Matlab, MathCAD, Maple или любых иных компьютерных ресурсов аналогичного назначения.
- 3. Интернет-ресурс справочной и математической литературы со свободным доступом www.eqworld.ipmnet.ru

7. Материально-техническое обеспечение дисциплины

По курсу имеется необходимое количество учебников и учебных пособий в библиотеке факультета и университета. Некоторые из них представлены на сайте физического факультета ННГУ и в форме Интернет-ресурсов в электронном виде.

Имеется большое число сайтов со свободным доступом, посвященных моделированию физических процессов самого различного уровня сложности.

Практические занятия проводятся в компьютерном классе, имеющем 12 достаточно современных компьютеров с установленным лицензионным программным обеспечением.

Программа составлена в соответствии с требованиями ОС ВО ННГУ с учетом рекомендаций и
ОПОП ВПО по направлению подготовки 09.03.02 «Информационные системы и технологии».

Автор: к.фм.н., доцент кафедры ИТФИ	Васин А	ı.C.
Заведующий кафедрой ИТФИ д.т.н., профессор		Фидельман В.Р.
Программа одобрена на заседании ме 17 ноября 2022 года, протокол б/н.	етодической комиссии физического фак	сультета ННГУ
	Председатель УМК физ.ф-та	Перов А.А