МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Высшая школа общей и прикладной физики
Программа утверждена решением президиума Ученого совета ННГУ
протокол от «14» декабря 2021г. № 4.
Рабочая программа дисциплины
Методы математической физики
Уровень высшего образования
Бакалавриат
Направление подготовки / специальность
03.03.02 - Физика
Направленность образовательной программы
Фундаментальная физика
Форма обучения
Очная

Нижний Новгород

2022 год

1. Место дисциплины в структуре ООП

Дисциплина Б1.О.10 «Методы математической физики» относится к обязательной части ООП направления подготовки 03.03.02 Физика.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код,	Планируемые результаты обуч (модулю), в соответствии с инд	Наименование оценочного средства	
содержание	компетенции	оцено того средетва	
компетенции)	Индикатор достижения компетенции (код, содержание индикатора)	Результаты обучения по дисциплине	
ОПК-1: Способен	Демонстрация способности	Знать способы решений	Собеседование и задачи
применять базовые	применять базовые знания в	вариционных задач,	(практические задания
знания в области физико-	области физико-	классификацию уравнений в	
математических и (или)	математических и (или)	частных производных,	
естественных наук в	естественных наук в сфере своей	методы вывода волновых	
сфере своей профессиональной	профессиональной деятельности	уравнений (с помощью	
профессиональной деятельности;		принципа Гамильтона) и	
осянсяоности,		уравнений тепло-	
		проводности (с помощью	
		учета теплового баланса),	
		пути решения уравнений и	
		гиперболических систем в	
		частных производных с	
		помощью разделения	
		переменных с использованием	
		Теоремы Стеклова, метода	
		характеристик, метода	
		интегральных	
		преобразований (Лапласа,	
		Фурье, Бесселя, синус- и	
		косинус-	
		преоб¬ра¬зо¬ваний), с	
		помощью функции Грина, с	
		помощью Ньютонова и	
		поверхностных потенциалов.	
		Иметь представление о	
		корректности постановки	
		задач для уравнений в	
		частных производных и об	
		основных подходах к её	
		проверке, знать подходы к	
		точному и приближенному	
		решению интегральных	
		уравнений Фредгольма	
		второго рода.	

Уметь пользоваться
методами математической
физики для решения
конкретных физических
задач.
Владеть навыками решения
задач, основанных на
полученных в ходе освоения
модуля знаниях.

3. Структура и содержание дисциплины

3.1. Трудоемкость дисциплины

	очная
Общая трудоемкость	8
Часов по учебному плану	288
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	64
- занятия семинарского типа (практические занятия /	64
лабораторные работы)	
- КСР	3
самостоятельная работа	112
Промежуточная аттестация	45
	экзамен, зачёт с оценкой

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Наименование и краткое содержание	Всего			в том числе		
разделов и тем дисциплины	(часы)					
		Контакт	гная работа (раб	ота во взаимоде	йствии с	Самостоятельная
			преподават	телем), часы		работа
			ИЗ	них		обучающегося,
						часы
		Занятия	Занятия	Занятия	Всего	
		лекционного	семинарского	лабораторного		
		типа	типа	типа		
	<u>F</u>	_K	_K	_K	 	
	Очная	очная	очная	очная	очная	очная
T. 1 D. C.	0	0.0	0.	0.	0	0
Тема 1. Вариационные задачи без	18	4	6	0	10	8
условий связи и со связями.						
T. 0.16						
Тема 2 Квадратичный функционал,	20	4	6		10	10
оператор Штурма, теорема Стеклова.						

Тема 3. Классификация уравнений в частных производных.	18	4	6		10	8
Тема 4. Уравнения колебаний струны и мембраны.	20	4	6		10	10
Тема 5. Уравнение теплопроводности.	18	4	6		10	8
Тема 6. Метод Фурье.	20	4	6		10	10
Тема 7. Метод характеристик.	18	4	6		10	8
Тема 8. Решение линейных гиперболических систем.	20	4	6		10	10
Тема 9. Методы интегральных преобразований в задачах математической физики.	22	8	4		12	10
Тема 10. Теория потенциала, включая Ньютонов потенциал и потенциалы простого и двойного слоя.	22	8	4		12	10
Тема 11 Применение потенциалов для решения задач Дирихле и Неймана для уравнения Пуассона	22	8	4		12	10
Тема 12 Интегральные уравнения Фредгольма второго рода и альтернатива Фредгольма.	22	8	4		12	10
Аттестация	45		1	I	I	<u> </u>
КСР	3				3	
Итого	288	64	64	0	131	112

Практические занятия (семинарские занятия /лабораторные работы) организуются, в том числе в форме практической подготовки, которая предусматривает участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

Практическая подготовка предусматривает:

Разбор решения задач различной степени сложности, проведение обсуждения рассматриваемых проблем в свете последних научных достижений в соответствующей области знаний. Студенты работают как индивидуально, так и коллективно.

На проведение практических занятий (семинарских занятий /лабораторных работ) в форме практической подготовки отводится 8 ч.

Практическая подготовка направлена на формирование и развитие:

- практических навыков в соответствии с профилем ОП:

Применение знаний и умений при решении научно-исследовательских задач профессиональной деятельности

- компетенций:

ОПК-1: Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности

Текущий контроль успеваемости реализуется в рамках: занятий семинарского типа, групповых консультаций, индивидуальных консультаций.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведены в п. 5.2.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень сформирова	Шкала оценивания сформированности компетенций							
нности компетенци й	плохо	неудовлетв орительно	удовлетвор ительно	хорошо	очень хорошо	отлично	превосходн о	
и (индикатора достижения компетенци й)	не зачтено		зачтено					
<u>Знания</u>	Отсутствие знаний теоретическ ого материала. Невозможн ость оценить полноту знаний вследствие отказа обучающег ося от ответа	Уровень знаний ниже минимальн ых требований. Имели место грубые ошибки.	Минимальн о допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствую щем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствую щем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответству ющем программе подготовки, без ошибок.	Уровень знаний в объеме, превышаю щем программу подготовки.	
<u>Умения</u>	Отсутствие минимальн ых умений. Невозможн ость оценить наличие умений вследствие	При решении стандартны х задач не продемонст рированы основные умения.	Продемонст рированы основные умения. Решены типовые задачи с негрубыми ошибками.	Продемонстр ированы все основные умения. Решены все основные задачи с негрубыми ошибками.	Продемонстр ированы все основные умения. Решены все основные задачи. Выполнены все задания, в	Продемонст рированы все основные умения, решены все основные задачи с отдельными	Продемонст рированы все основные умения. Решены все основные задачи. Выполнены	

	отказа обучающег ося от ответа Отсутствие	место грубые ошибки.	Выполнены все задания но не в полном объеме.	Выполнены все задания, в полном объеме, но некоторые с недочетами.	полном объеме, но некоторые с недочетами.	несуществе нными недочетами, выполнены все задания в полном объеме.	все задания, в полном объеме без недочетов
Навыки	владения материалом . Невозможн ость оценить наличие навыков вследствие отказа обучающег ося от ответа	решении стандартны х задач не продемонст рированы базовые навыки. Имели место грубые ошибки.	минимальн ый набор навыков для решения стандартны х задач с некоторыми недочетами	продемонстр ированы базовые навыки при решении стандартных задач с некоторыми недочетами	продемонстр ированы базовые навыки при решении стандартных задач без ошибок и недочетов.	продемонет рированы навыки при решении нестандартных задач без ошибок и недочетов.	продемонет рирован творческий подход к решению нестандартн ых задач

Шкала оценки при промежуточной аттестации

0	ценка	Уровень подготовки				
	Превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно», продемонстрированы знания, умения, владения по соответствующим компетенциям на уровне, выше предусмотренного программой				
Зачтено	ОнгилтО	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично», при этом хотя бы одна компетенция сформирована на уровне «отлично»				
	Очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо», при этом хотя бы одна компетенция сформирована на уровне «очень хорошо»				
	Хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо», при этом хотя бы одна компетенция сформирована на уровне «хорошо»				
	Удовлетворительно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»				
не зачтено	Неудовлетворительно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно», ни одна из компетенций не сформирована на уровне «плохо»				
	Плохо	Хотя бы одна компетенция сформирована на уровне «плохо»				

5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения

(согласно оценочным средствам табл.2)

5.2.1 Контрольные вопросы

	компетенции
1) Лемма Лагранжа и уравнение Эйлера.	ОПК-1
2) Вывод уравнений Эйлера – Лагранжа. Принцип Гамильтона.	ОПК-1
3) Вывод естественных граничных условий для функционалов	ОПК-1
различного типа.	
4) Изопериметрическая задача.	ОПК-1
5) Квадратичный функционал и оператор Штурма.	ОПК-1
6) Свойства собственных значений и собственных функций оператора Штурма. Теорема сравнения.	ОПК-1
7) Теорема Стеклова.	ОПК-1
8) Обобщенная задача Штурма и её связь с уравнением Бесселя.	ОПК-1
9) Уравнения Шредингера и Лапласа как уравнения Остроградского для соответствующих функционалов; свойства их решений.	ОПК-1
10) Вывод уравнения малых колебаний струны и граничных условий для него на основе принципа Гамильтона.	ОПК-1
11) Корректность постановки задач для уравнений в частных производных в общем случае и применительно к уравнению колебаний струны.	
12) Решение методом Фурье задач о свободных и вынужденных колебаниях однородной струны с однородными и неоднородными граничными условиями.	
13) Решение задач о колебаниях прямоугольной и круглой мембран.	ОПК-1
14) Функции Бесселя и их свойства.	ОПК-1
15) Вывод уравнения теплопроводности, типы граничных условий.	ОПК-1
16) Принцип максимума для одномерного уравнения теплопроводности. Теорема единственности.	ОПК-1
17) Функция Грина в задачах теплопроводности: определение, построение, применение.	ОПК-1
18) Дельта-функция и её использование для нахождения функции Грина в задачах теплопроводности.	ОПК-1
19) Преобразование Лапласа (с выводом формулы обращения).	ОПК-1
20) Использование преобразования Фурье и синус- косинус- преобразований для решения задач теплопроводности.	ОПК-1
21) Применение двух интегральных преобразований для решения одного уравнения с частными производными.	ОПК-1
22) Классификация линейных уравнений 2-го порядка.	ОПК-1
23) Характеристики и их использование для решения гиперболического уравнения с двумя независимыми переменными.	ОПК-1
24) Вывод формулы Даламбера для ограниченной и бесконечной струны.	ОПК-1
25) Приведение систем гиперболических уравнений к каноническому виду и возможности решения.	ОПК-1
26) Решение волнового уравнения в трехмерном пространстве и на плоскости с помощью формул Кирхгофа и Пуассона.	ОПК-1
27) Вывод первой и второй формул Грина и основной интегральной формулы.	ОПК-1
28) Гармонические функции и их свойства.	ОПК-1

29) Единственность и непрерывная зависимость от граничных условий решений внутренней и внешней задачи Дирихле.	ОПК-1
30) Внутренняя и внешняя задача Неймана для уравнений Лапласа.	ОПК-1
31) Функция Грина задачи Дирихле для уравнения Лапласа:	ОПК-1
определение, использование для нахождения решения, построение	
методом электростатических изображений.	
32) Существование и непрерывность сингулярных объемных и	ОПК-1
поверхностных интегралов.	
33) Ньютонов потенциал и его свойства.	ОПК-1
34) Свойства поверхностных потенциалов простого и двойного слоя.	ОПК-1
35) Сведение с помощью поверхностных потенциалов задач Дирихле и	ОПК-1
Неймана к интегральным уравнениям Фредгольма 2-го рода.	
36) Уравнение Фредгольма 2-го рода с малым или вырожденным ядром:	ОПК-1
точное решение для вырожденного ядра и приближенное для малого.	
37) Альтернатива Фредгольма для интегральных уравнений с ядрами специального вида.	ОПК-1
38) Интегральные уравнения Фредгольма 2-го рода в трехмерном пространстве в случае ядер с особенностями.	ОПК-1
39) Доказательство существования решений задач Дирихле и Неймана с	ОПК-1
помощью интегральных уравнений.	
40) Некорректность задачи решения уравнения Фредгольма 1-го рода и	ОПК-1
её причины.	

5.2.2 Теоретические вопросы для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины:

Типовые задания для оценки сформированности компетенций ОПК-1:

Задача 1.1 Найти обще решение уравнения
$$(x-y)u_{xy} - u_x + u_y = 0$$

<u>Задача 1.2</u> Найти методом изображений функцию Грина задачи Дирихле для оператора Лапласа в полукруге.

3адача 1.3 Найти распределение температуры в однородном стержне, если левый конец теплоизолирован, на правом происходит излучение тепла в среду с нулевой температурой, температура в начальный момент постоянна и равна T, в середине стержня имеется маленький источник тепла с постоянной во времени производительностью.

<u>Задача 1.4</u> Вывести и решить уравнение малых колебаний тонкой тяжелой веревки, закрепленной в верхней точки и движущейся в вертикальной плоскости.

<u>Задача 1.5</u> Струна с закрепленными концами начинает движение с нулевым начальным отклонением и постоянной вдоль струны начальной скоростью. Найти отклонение струны в любой момент времени. Имеет ли эта задача решение? Имеет ли это решение физический смысл?

<u>Задача 1.6</u> Найти уравнение поверхности минимальной площади, натянутой на проволочный контур в трехмерном пространстве. Выяснить геометрический смысл условия минимальности.

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) основная литература:

- 1) Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977, -736 с. -61 экз.
- 2) Годунов С.К. Уравнения математической физики. М.: Наука, 1979 391 с. -61 экз.
- 3) Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: URSS, 2002.-320 с -84 экз.
- 4) Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. М.: Наука, 1980. -688 с. -134 экз.
- 5) Жислин Г.М. Интегральные преобразования для уравнений математической физики. Учебно-методическое пособие. Научно-исследовательский радиофизический институт (ФГБНУ НИРФИ) Н.Новгород 2013,84 с. (Деканат ВШОПФ) -30 экз.

б) дополнительная литература:

- 1) Романовский П.И. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. М.: Наука, 1964, 1973, 1980 -336 с. -8 экз.
- 2) Гельфанд И.М., Фомин С.В. Вариационное исчисление. М.: Физтатгиз, 1961. -228 с. -21 экз.
- 3) Арсенин В.Я. Методы математической физики и специальные функции. М.: Наука, 1984. 383 с. -38 экз.
- в) программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины)

программное обеспечение и Интернет-ресурсы Учебно-образовательная физико-математическая библиотека EqWorld http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm

7. Материально-техническое обеспечение дисциплины (модуля)

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения: для проведения лекций и практических занятий требуется типовое оборудование лекционной аудитории.

Для подготовки самостоятельных контрольных работ и для их графического представления (если это необходимо), а также для расширения коммуникационных возможностей студенты имеют возможность работать в компьютерных классах с соответствующим лицензионным программным обеспечением и выходом в Интернет.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети Интернет и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ФГОС ВО /ОС ННГУ по направлению 03.03.02 - Физика.

Автор(ы): Г.М. Жислин

Заведующий кафедрой:

Программа одобрена на заседании методической комиссии ВШОПФ от 30.06.2021, протокол № 3.