МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический
(факультет / институт / филиал)
УТВЕРЖДЕНО
решением президиума Ученого совета ННГУ протокол от
«14» декабря 2021 г. № 4
Рабочая программа дисциплины (модуля)
Полупроводниковая электроника
(наименование дисциплины (модуля)) Бакалавриат
(бакалавриат / магистратура / специалитет)
03.03.03 Радиофизика
(указывается код и наименование направления подготовки / специальности)
Фундаментальная радиофизика
(указывается профиль / магистерская программа / специализация)
Бакалавр
(бакалавр / магистр / специалист)
Очная
(очная / очно-заочная / заочная)

Нижний Новгород

1. Место и цели дисциплины (модуля) в структуре ОПОП

Дисциплина «Полупроводниковая электроника» относится к дисциплинам обязательной части основной профессиональной образовательной программы (ОПОП) высшего образования по направлению подготовки 03.03.03 «Радиофизика» на радиофизическом факультете ННГУ. Дисциплина обязательна для освоения в 8-м семестре.

Целями освоения дисциплины являются:

- получить совокупность знаний о кристаллической структуре и зонной модели твердого тела, статистике электронов в твердом теле;
- получить совокупность знаний о неравновесных явления в полупроводниках, явлениях на поверхности и границе раздела материалов, магнитных свойствах твердых тел; сверхпроводимости;
- рассмотреть процессы происходящие в металлах, диэлектриках и сверхпроводниках.
- получить представления и понятие о колебаниях решетки, поведении электронов в периодическом потенциале;
- получить совокупность знаний о теории классических полупроводниковых приборов базовых элементов интегральных схем, полупроводниковых СВЧ диодах базовых элементах систем передачи данных, полупроводниковых приборах с гетеропереходами;
- получить совокупность знаний о принципах функционирования полупроводниковых приборов.

2. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции, уровень освоения – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций
ОПК-1 способность к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональной деятельности	31 (ОПК-1) Знать основные устройства на базе диода, такие как выпрямители, стабилизаторы, варисторы, и такие понятия как теорема Блоха, модель Кронига-Пени, зонная структура кристаллов, разрешенные и запрещенные зоны. У1 (ОПК-1) Уметь различать схемы включения транзисторов. В1 (ОПК-1) Владеть навыком анализировать режимы работы биполярного транзистора.
ОПК-2 способность самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии	31 (ОПК-2) Знать такие понятия, как уровень Ферми, концентрация носителей в собственных и примесных полупроводниках, область истощения примесей, комплементарные схемы, базовые элементы логики, туннельный диод, лавинно-пролетный диод, генератор Ганна, фотодетекторы, полупроводниковые лазеры, солнечные батареи.

У1	(ОПК-2)	Уметь	различать	основные	способы
вкл	ючения тр	анзисто	ров.		
B1	(ОПК-	2) B	ладеть	навыком	анализа
пол	упроводни	иковых	приборов	СВЧ диа	апазона и
ОПТ	оэлектрон	ных при	іборов.		

3. Структура и содержание дисциплины (модуля)

Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся.

Объем дисциплины (модуля) составляет <u>3</u> зачетные единицы, всего
108 часов, из которых35 часов составляет контактная работа обучающегося с
преподавателем (33 часа занятия лекционного типа,0 часов занятия семинарского
типа (семинары, научно-практические занятия, лабораторные работы и т.п.),0часов
групповые консультации, <u>0</u> часов индивидуальные консультации, <u>2</u> часа мероприятия
текущего контроля успеваемости, $\underline{}$ мероприятия промежуточной аттестации),
подготовку и сдачу экзамена.

Содержание дисциплины (модуля)

Наименование и краткое содержание				том числе		_
разделов и тем дисциплины (модуля),		Конта		абота (раб ействии с		
форма промежуточной аттестации по						
дисциплине (модулю)		препо	давател	ем), часы	из них	_
	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная работа обучающегося, часы
1.Кристаллическая структура твердого тела	5	2	Σ. /	Σ. /	2	3
2.Колебания и волны в кристаллической решетке	4	2			2	2
3.Электроны в периодическом потенциале	4	2			2	2
4.Статистика носителей заряда	4	2			2	2
5.Квазиклассическое описание движения носителей заряда	4	2			2	2
6.Неравновесные явления в полупроводниках	4	2			2	2
7.Процессы переноса в неоднородных полупроводниках	4	2			2	2
8. Теория р-п перехода	4	2			2	2
9. Устройства на базе диода	4	2			2	2
10. Биполярный транзистор	4	2			2	2
11. Работа биполярных транзисторов в	4	2			2	2

схемах				
12. Явления на резкой границе раздела	4	2	2	2
материалов				
13. Полевой транзистор с р-п преходом и	4	2	2	2
барьером Шоттки				
14. Полевой транзистор металл-	4	2	2	2
диэлектрик-полупроводник				
15. Полевой транзистор металл-окисел-	4	2	2	2
полупроводник				
16. Работа полевых транзисторов в	3	1	1	2
схемах				
17.Полупроводниковые приборы СВЧ	3	1	1	2
диапазона				
18.Оптоэлектронные приборы	3	1	1	2
В т. ч. текущий контроль	2	2	2	
Промежуточная аттестация – экзамен		·		

4. Образовательные технологии

В соответствии с рабочей программой и тематическим планом изучение дисциплины проходит в виде аудиторной и самостоятельной работы студентов. Учебный процесс в аудитории осуществляется в форме лекционных и практических занятий.

Образовательные технологии, способствующие формированию компетенций используемые на занятиях лекционного и практического типа:

- лекции с проблемным изложением учебного материала.
- регламентированная самостоятельная деятельность студентов;
- решение проблемных ситуаций для реализации технологии коллективной мыслительной деятельности.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

- 5.1 Темы лекционных занятий, по которым дается домашнее задание
 - 1. Кристаллические решетки. Элементарная ячейка. Симметрии. Решетки Браве. Кристаллографические направления.
 - 2. Законы дисперсии для трехмерной решетки. Акустические и оптические фононы.
 - 3. Теория теплоемкости Дюлонга-Пти. Квантовый подход к описанию кристаллов.
 - 4. Уравнение Шредингера для периодического потенциала. Теорема Блоха. Модель Кронига-Пени. Зонная структура кристаллов: разрешенные и запрещенные зоны.
 - 5. Механизмы рассеяния носителей заряда: примесное рассеяние, рассеяние на акустических фононах, рассеяние на оптических фононах, рассеяние на дефектах, электрон-электронное рассеяние.
 - 6. Механизмы рекомбинации носителей. Время жизни неравновесных носителей.
 - 7. Распределение заряда, структура поля и потенциала в р-п переходе.
 - 8. Распределение концентрации основных и неосновных носителей в р-п переходе.
 - 9. Р-п переход в состояние равновесия. Обедненный слой. Диод под внешним напряжением.
 - 10. Формула Шокли. Вольт-амперные характеристики.

- 11. Барьерная емкость p-n перехода и сопротивление базы.
- 12. Вольт-амперные характеристики биполярного транзистора. Модель Эберса-Молла.
- 13. Контакт металл-полупроводник. Барьер Шоттки. Омический контакт.

Выполнение домашних заданий проверяется на занятиях. Учебно-методическое обеспечение самостоятельной работы – основная и дополнительная литература.

5.2 Вопросы, которые должны быть проработаны в ходе самостоятельной работы

- 1. Зоны Бриллюэна. Рентгеноструктурный анализ кристаллов.
- 2. Основные и неосновные носители заряда. Управление проводимостью с помощью легирования.
- 3. Эффект Холла
- 4. Фотоионизация и фотопроводимость.
- 5. Максвелловская релаксация в проводящей среде.
- 6. Магнитная восприимчивость и намагниченность.
- 7. Схемы включения биполярных транзисторов. Базовые элементы логики. Высокочастотные свойства.
- 8. Плотность поверхностных состояний. Гетеропереход.
- 9. Полевой транзистор металл-окисел-полупроводник. Высокочастотные свойства.
- 10. Комплементарные схемы.
- 11. Лавинно-пролетный диод. Генератор Ганна.
- 12. Солнечные батареи.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования.

ОПК-1 способностью к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональной деятельности

Индикато		Критерии оценивания (дескрипторы)					
ры	«плохо»	«неудов	«удовлетв	«хорошо»	«очень	«отличн	«превос
компетен		летворит	орительно		хорошо»	0>>	ходно»
ции		ельно»	>>				
<u>Знания</u>	Отсутств	Наличие	Знание	Знание	Знание	Знание	Знание
Знать	ие знаний	грубых	основного	основного	основно	основно	основно
основные	материала	ошибок	материала	материал	ГО	го	го и
устройств		В	с рядом	ом с	материа	материа	дополни
а на базе		основно	негрубых	рядом	ла с	ла без	тельног
диода,		M	ошибок	заметных	незначи	ошибок	О
такие как		материа		погрешно	тельным	И	материа
выпрямит		ле		стей	И	погрешн	ла без
ели,					погрешн	остей	ошибок
стабилиза					остями		И
торы,							погреш
варистор							ностей
ы, и							
такие							
понятия							
как							
теорема							

_	T	T	T	T	T	T	
Блоха,							
модель							
Кронига-							
Пени,							
зонная							
структура							
кристалл							
OB,							
разрешен							
ные и							
запрещен							
ные зоны.							
Умения	Отсутству	Наличие	Способно	Способно	Способн	Способн	Способ
Уметь	ет умение	грубых	сть	сть	ость	ость	ность
различать	различать	ошибок	различать	различать	различат	различат	различа
-	-		*	*	_	-	-
схемы	схемы	при	схемы	схемы	ь схемы	ь схемы	ТЬ
включени	включени	различе	включени	включени	включен	включен	схемы
Я	Я	нии	Я	Я	ИЯ	ИЯ	включе
транзисто	транзисто	схемы	транзисто	транзисто	транзист	транзист	ния
ров.	ров.	включен	ров с	ров с	оров	оров	транзис
		ия	существе	незначите	почтибе		торов и
		транзист	нными	льными	3		полупро
		оров.	ошибками	погрешно	ошибок		воднико
		1		стями	и		вых
					погрешн		приборо
					остей		В
Навыки	Полное	Отсутст	Владение	Посредст	Достато	Хороше	Всестор
				_	' '	1 *	-
Владеть	отсутстви	вие	навыком	венное	чное	e	оннее
навыком	е навыка	навыка	В	владение	владени	владени	владени
анализир			минималь	навыком	e	e	e
овать			НОМ		навыком	навыком	навыко
режимы			объёме				M
работы							
биполярн							
ого							
транзисто							
pa.							
ра. Шкала	0-20 %	20 – 50	50 – 70 %	70-80 %	80 – 90	90 – 99	100%
	0 - 20 70	20 – 30 %	JU - 70 %	70-00 70	% %	90 – 99 %	10070
оценок		70			70	70	
по							
проценту							
правильн							
0							
выполнен							
ных							
контроль							
_	1						
т пыл							ļ l
ных заданий							

 $O\Pi K$ -2 способностью самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии

Индикато		К	ритерии оце	нивания (дес	крипторы)		
ры	«плохо»	«неудов	«удовлетв	«хорошо»	«очень	«отличн	«превос
компетен		летворит	орительно	1	хорошо»	o»	ходно»
ции		ельно»	»		1		
Знания	Отсутств	Наличие	Знание	Знание	Знание	Знание	Знание
Знать	ие знаний	грубых	основного	основного	основно	основно	основно
такие	материала	ошибок	материала	материал	го	го	го и
понятия,	матернала	В	с рядом	OM C	материа	материа	дополни
как		ОСНОВНО	негрубых	рядом	ла с	ла без	тельног
уровень		М	ошибок	заметных	незначи	ошибок	0
Ферми,		материа	ошиоок	погрешно	тельным	И	материа
концентр		ле		стей	И	погрешн	ла без
ация		310		CICH	погрешн	остей	ошибок
носителе					остями	остен	И
й в					ОСТЯМИ		погреш
собствен							ностей
ных и							постем
примесн ых							
полупров одниках,							
область							
истощени я							
примесей,							
комплеме							
нтарные							
схемы,							
базовые							
элементы							
логики,							
туннельн							
ый диод,							
лавинно-							
пролетны							
й диод,							
генератор							
Ганна,							
фотодете							
кторы,							
полупров							
одниковы							
е лазеры,							
солнечны							
е батареи							
<u>Умения</u>	Отсутству	Наличие	Способно	Способно	Способн	Способн	Способ
Уметь	ет	грубых	сть	сть	ость	ость	ность
различать	способнос	ошибок	различать	различать	различат	различат	различа
основные	ТЬ	при	основные	основные	Ь	Ь	ТЬ
способы	различать	различе	способы	способы	основны	основны	основны
включени	основные	нии	включени	включени	e	e	e

я транзисто ров.	способы включени я транзисто ров	основны х способо в включен ия транзист оров	я транзисто ров с существе нными ошибками	я транзисто ров с незначите льными погрешно стями	способы включен ия транзист оров почти без ошибок и погрешн остей	способы включен ия полевых транзист оров	способы включе ния полевых и биполяр ных транзис торов
Навыки Владеть навыком анализа полупров одниковы х приборов СВЧ диапазон а и оптоэлект ронных приборов	Полное отсутстви е навыка	Отсутст вие навыка	Владение навыком в минималь ном объёме	Посредст венное владение навыком	Достато чное владени е навыком	Хороше е владени е навыком	Всестор оннее владени е навыко м
Шкала оценок по проценту правильн о выполнен ных контроль ных заданий	0 – 20 %	20 – 50 %	50 – 70 %	70-80 %	80 – 90 %	90 – 99	100%

6.2. Описание шкал оценивания.

Итоговый контроль качества усвоения студентами содержания дисциплины проводится в виде экзамена и зачета с оценкой, на котором определяется:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала
- способности студентов использовать полученные знания для решения конкретных задач.

Экзамен и зачет проводится в устной форме и заключается в ответе студентом на теоретические вопроса курса (с предварительной подготовкой) и последующем собеседовании в рамках

тематики курса. Собеседование проводится в форме вопросов, на которые студент должен дать краткий ответ. Практическая часть экзамена предусматривает решение задачи.

Критерии оценок.

Оценка	Уровень подготовки
Превосходно	Высокий уровень подготовки, безупречное владение теоретическим материалом, студент демонстрирует творческий поход к решению нестандартных ситуаций. Студент дал полный и развернутый ответ на все теоретические вопросы билета, подтверждая теоретический материал практическими примерами. Студент активно работал на занятиях. 100 %-ное выполнение контрольных заданий
Отлично	Высокий уровень подготовки с незначительными ошибками. Студент дал полный и развернутый ответ на все теоретические вопросы билета, подтверждает теоретический материал практическими примерами. Студент активно работал на занятиях. Выполнение контрольных заданий на 90% и выше
Очень хорошо	Хорошая подготовка. Студент дает ответ на все теоретические вопросы билета при наличии неточностей. Студент активно работал на занятиях. Выполнение контрольных заданий от 80 до 90%.
Хорошо	В целом хорошая подготовка с заметными ошибками или недочетами. Студент дает полный ответ на все теоретические вопросы билета при наличии неточностей. Допускаются ошибки при ответах на дополнительные и уточняющие вопросы экзаменатора. Студент работал на занятиях. Выполнение контрольных заданий от 70 до 80%.
Удовлетворительно	Минимально достаточный уровень подготовки. Студент показывает минимальный уровень теоретических знаний, делает существенные ошибки, но при ответах на наводящие вопросы, может правильно сориентироваться и в общих чертах дать правильный ответ. Студент посещал занятия.

	Выполнение контрольных заданий от 50 до 70%.				
Неудовлетворительно	Подготовка недостаточная и требует дополнительного изучения материала. Студент дает ошибочные ответы, как на теоретические вопросы билета, так и на наводящие и дополнительные вопросы экзаменатора. Выполнение контрольных заданий до 50%.				
	•				
Плохо	Подготовка абсолютно недостаточная. Студент не отвечает на поставленные вопросы.				
	Выполнение контрольных заданий менее 20 %.				

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине (модулю), характеризующих этапы формирования компетенций.

Для оценивания результатов обучения в виде <u>знаний</u> используются следующие процедуры и технологии:

- устные и письменные ответы на вопросы.

Для оценивания результатов обучения в виде <u>умений</u> и <u>навыков</u> используются следующие процедуры и технологии:

- практические контрольные задания, включающие одну или несколько задач

Для проведения итогового контроля сформированности компетенции используются: устный опрос, решение практических задач.

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Вопросы к зачету для оценки сформированности компетенций ОПК-1, ОПК-2

- 1. Особенности кристаллической структуры твердых тел и правила построения ячейки Вигнера-Зейтца.
- 2. Причины возникновения зонной структуры твердых тел. Эффективная масса электронов и дырок
- 3. Типы твердых тел: металлы, диэлектрики, полупроводники. Уровень Ферми. Собственная и примесная проводимость. Основные и неосновные носители заряда.
- 4. Акустические и оптические фононы. Продольные и поперечные колебания. Законы дисперсии для трехмерной решетки.
- 5. Кинетическое уравнение Больцмана и механизмы рассеяния электронов. Подвижность носителей заряда.
- 6. Разогрев электронного газа в полупроводниках. Время релаксации импульса и энергии
- 7. Фотоионизация и фотопроводимость. Механизмы рекомбинации носителей.
- 8. Диффузионный и дрейфовый ток. Соотношения Эйнштейна. Система уравнений для описания потенциалов, полей и токов. Время жизни и диффузионная длина неосновных носителей заряда.
- 9. Каковы магнитные свойства твердых тел?

Экзаменационные вопросы для оценки сформированности компетенций ОПК-1, ОПК-2

- 1. Р-п переход в состояние равновесия и под внешним напряжением. Вольт-амперные характеристики перехода.
- 2. Распределение заряда, структура поля и потенциала в p-n переходе. Распределение концентрации основных и неосновных носителей.
- 3. Формула Шокли. Вольт-амперные характеристики диода на основе p-n перехода.
- 4. Барьерная емкость p-n перехода и сопротивление базы. Пробой p-n перехода.
- 5. Выпрямители. Стабилизаторы.
- 6. Варисторы. Варакторы. Диоды с накоплением заряда.
- **7.** Биполярный транзистор. Типы транзисторов. Теория работы транзистора. Токи созданные основными и неосновными носителями.
- 8. Вольт-амперные характеристики биполярного транзистора. Модель Эберса-Молла. Параметры для описания биполярных транзисторов.
- 9. Режимы работы биполярного транзистора. Схемы включения транзисторов. Базовые элементы логики. Высокочастотные свойства.
- 10. Явления на резкой границе раздела материалов. Контакт металл-полупроводник. Барьер Шоттки. Омический контакт.
- 11. Структура металл-диэлектрик-полупроводник. Структура металл-окисел-полупроводник. Плотность поверхностных состояний. Гетеропереход.
- 12. Полевой транзистор с p-n преходом и барьером Шоттки. Эффект поля. Распределение потенциала и поля в приборе.
- 13. Расчет статических вольт-амперных характеристик полевых транзисторов. Типы и основные параметры транзисторов. Высокочастотные свойства.
- 14. Полевой транзистор металл-диэлектрик-полупроводник. Принцип работы транзистора. Распределение потенциала и поля в приборе. Расчет статических вольт-амперных характеристик. Типы и основные параметры транзисторов.
- 15. Полевой транзистор металл-окисел-полупроводник. Принцип работы транзистора. Распределение потенциала и поля в приборе. Расчет статических вольт-амперных характеристик.
- 16. Работа полевых транзисторов в схемах. Основные способы включения транзисторов. Комплементарные схемы. Базовые элементы логики.
- 17. Туннельный диод. Лавинно-пролетный диод.
- 18. Генератор Ганна.
- 19. Фотодетекторы. Полупроводниковые лазеры. Солнечные батареи.

Типовые задачи для оценивания сформированности умений и навыков по компетенциям ОПК-1, ОПК-2

- 1. Вывести вольт-амперную и вольт-фарадную характеристики р-п перехода. Объяснить физическую природу обратного тока диода. С использованием зонной диаграммы и распределения концентрации электронов и дырок дать качественную интерпретацию наличию небольшого наклона на участке насыщения обратной ветви ВАХ для реальных р-п переходов.
- 2. Вывести вольт-амперную характеристику p-n перехода. По аналогии с p-n переходом объяснить процессы протекания тока в гетеропереходе. Объяснить причины возникновения униполярной инжекции в биполярном гетеропереходе. Оценить соотношение электронной и дырочной компоненты токов в биполярном гетеропереходе. В какой конструкции гетероперехода возможна биполярная инжекция?
- 3. Вывести вольт-амперную и вольт-фарадную характеристику диода Шоттки. Как будет трансформироваться вольт-фарадная характеристика и напряжение пробоя Au-n--n+ диода

Шоттки при уменьшении толщины n-слоя? Ответы обосновать с помощью зонной диаграммы. Объяснить технологию изготовления барьерного и омического контактов (фотолитография, напыление, травление, «взрыв»)

- 4. Объяснить распределение концентрации электронов, наличие электрического поля и потенциального барьера на границе n+-n перехода. Используя условия равновесия в такой системе вывести соотношение Эйнштейна. Объяснить физический смысл теплового потенциала как коэффициента пропорциональности между подвижностью и коэффициентом диффузии.
- 5. Найти положение уровня Ферми и концентрацию электронов в собственном германии при температуре 600 K, если известно, что ширина запрещенной зоны при таких температурах меняется по закону $E_g = (0.7 3^{\circ}10^{\circ4}T(K))$ эВ (m_n=0.02m₀, m_p=0.2m₀). Как зависит уровень Ферми от температуры в примесном полупроводнике и получить (качественно) зависимость контактной разности потенциалов в p-n переходе от температуры.
- 6. Получив зависимость крутизны BAX полевого транзистора с затвором Шоттки и его коэффициента статического усиления от напряжения на затворе и уровня легирования канала, объяснить преимущество канала на основе двумерного электронного газа.
- 7. Получить зависимость коэффициента усиления полевого транзистора с управляющим p-n переходом от концентрации примеси в канале и напряжения на затворе. Для конкретной выходной ВАХ транзистора построить нагрузочную прямую и графически (качественно) определить динамический диапазон амплитуды входного сигнала (в схеме с общим истоком) для которого реализуется режим линейного усиления.
- 8. Объяснить преимущества гетеробиполярного транзистора перед биполярным для чего численно оценить: 1) степень влияния униполярной инжекции на коэффициент переноса носителей через базу; 2) амплитуду встроенного поля в варизонной базе и связанного с ним увеличения скорости носителей заряда.
- 9. Вывести ВАХ ПТ с управляющим p-n переходом. Качественно, исходя из распределений концентрации носителей заряда и напряженности электрического поля вдоль канала транзистора, объяснить причины возникновения участка насыщения на выходной ВАХ транзистора. Объяснить правила выбора сопротивления нагрузки и напряжения питания транзистора для получения максимальной мощности выходного сигнала.
- 10. Вывести ВАХ МДП транзистора с индуцированным каналом. Качественно, используя зонную диаграмму и распределение электрического поля в транзисторе, объяснить причины возникновения насыщения на выходной ВАХ транзистора. Вывести коэффициент статического усиления прибора и объяснить почему для реализации максимального усиления транзистора необходимо использовать участок насыщения выходной ВАХ.
- 11. Вывести ВАХ биполярного транзистора. Объяснить причины наличия небольшого наклона на выходных ВАХ транзистора (эффект Эрли). Для ответа использовать зонную диаграмму, график распределения концентраций электронов и дырок от продольной координаты в структуре транзистора и эквивалентную схему. Объяснить технологию формирования биполярного транзистора с помощью ионного легирования.
- 12. На конкретном примере распределения электрического поля вдоль канала полевого транзистора с коротким затвором объяснить физический смысл уравнений релаксации энергии и импульса электронов в полупроводнике. Количественно оценить длину затвора GaAs

полевого транзистора Шоттки при которой эффект всплеска скорости будет давать наибольший положительный эффект (считать времена релаксации энергии и импульса известными)?

- 13. Исходя из времени релаксации импульса (10-13 с), эффективной массы электронов ($0.55m_o$ для GaAs и $0.2~m_o$ для Si) и ширины запрещенной зоны ($1.2~\mathrm{3B}$ в Si и $1.4~\mathrm{3B}$ в GaAs) оценить напряженность поля при котором возникает лавинный пробой в GaAs и Si.
- 14. Вывести соотношение для плотности состояний в полупроводниковом кристалле. Получить выражение для концентрации электронов в зоне проводимости исходя из плотности состояний и функции Ферми. Объяснить при каких условиях электронный газ является вырожденным.
- 15. В однородный полубесконечный электронный полупроводник с поверхности x=0 стационарно инжектируются дырки. Вдоль образца в направлении х приложено электрическое поле Е. Определить на каком расстоянии от поверхности образца концентрация неравновесных дырок уменьшится в е раз. Коэффициент диффузии дырок D_p , подвижность μ_p и время жизни τ_p . Объяснить, чем отличаются характеристики (BAX, BФX и т.д.) фоторезистора и фотодиода Шоттки.
- 6.5. Методические материалы, определяющие процедуры оценивания.

Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утверждённое приказом ректора ННГУ от 13.02.2014 г. №55-ОД,

Положение о фонде оценочных средств, утвержденное приказом ректора ННГУ от 10.06.2015 №247-ОД.

7. Учебно-методическое и информационное обеспечение дисциплины (модуля) а) основная литература:

- 1. Гапонов В.И. "Электроника" Часть 1 Физматгиз М. 1960
- 2. Гапонов В.И. "Электроника" Часть 2 Физматгиз М. 1960
- 3. Орешкин П.Т. "Физика полупроводников и диэлектриков" Высш.школа М. 1977
- 4. Овечкин Ю.А. "Полупроводниковые приборы" Высш. школа М.1986
- 5. Степаненко И.П. "Основы микроэлектроники" Сов. радио М. 1980
- 6. Степаненко И.П. "Основы теории транзисторов и транзисторных схем" Энергия. М. 1977
- 7. Митрофанов О.В., Симонов Б.М., Коледов Л.А. "Физические основы функционирования изделий микроэлектроники" Микроэлектроника. Высшая школа, М., 1987
- 8. Пасынков В.В., Чиркин Л.К., Шинков А.П., "Полупроводниковые приборы" Высшая школа, М., 1981
- 9. Тугов Н.М., Глебов Б.А., Чарыков Н.А. "Полупроводниковые приборы" Энергоатомиздат, М., 1990
- 10. Федотов Я.А. "Основы физики полупроводниковых приборов" Сов. Радио М. 1969
- 11. Зи С. "Физика полупроводниковых приборов" т. 1, т. 2, Мир. М., 1984
- 12. Кремлев В.Я. "Физикотопологическое моделирование структур элементов БИС" Высшая школа, М., 1990
- 13 Пожела Ю., Юцене В. "Физика сверхбыстродействующих транзисторов" Мокслас, Вильнюс, 1985
- 14. Киттель Ч. "Элементарная физика твердого тела" Наука М. 1965
- 15. Займан Дж. "Принципы теории твердого тела" Мир, М., 1966
 - б) дополнительная литература:
- 1. Шалимова К.В. "Физика полупроводниковых приборов" Энергия М. 1971
- 2. Маллер Р., Крейминс Т. "Элементы интегральных схем"

- 3. Ржевкин К.С. "Физические принципы действия полупроводниковых приборов" МГУ, М., 1986
- 4. Ефимов Е.И., Козырь И.Я., Горбунов Ю.И. "Микроэлектроника. Физические и технологические основы. Надежность." Высшая школа, М., 1986
- 5. Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. "Микроэлектроника. Проектирование, виды микросхем, функциональная микроэлектроника. Высшая школа, М., 1987
- 6. Росадо Л. "Физическая электроника и микроэлектроника" М. Высшая школа, 1991
- 7. Пикус Г.Е. "Основы теории полупроводниковых приборов" Наука, М., 1965
- 8. Зеегер К. "Физика полупроводниковых приборов" Мир, М., 1977
- 9. Смит Р. "Полупроводники" Мир, М., 1982
- 10. Фистуль В.И. "Введение в физику полупроводников" Высшая школа, М., 1984
- 11. Шалобутов Ю.К. "Введение в физику полупроводников" Наука, Л., 1969
- 12. Викулин И.М.,Стафеев В.И. "Физика полупроводниковых приборов" Радио и связь М. 1990
- 13. Блатт Ф. "Физика электронной проводимости в твердых телах" Мир, М., 1971
- 14. Бонч-Бруевич В.Л., Калашников С.Г. "Физика полупроводниковых приборов" Наука, М., 1977
- 15. Киреев П.С. "Физика полупроводников" Высшая школа, М., 1969
- 16. Ансельм А.И. "Введение в теорию полупроводников" Наука М. 1978

8.	Материально-техническое обеспечение дисциплины	(модуля)
----	--	----------

Лекционный зал, аудитории для практических занятий в группах.

Программа составлена в со	ответствии с требованиям	и ФГОС ВПО/ВО с уче	етом рекомендаций
и ОПОП ВПО по направлен	нию (профилю), специальн	ости (специализации) _	радиофизика_

Автор (ы) Козлов В.А
Рецензент (ы) Оболенский С.В.
Завелующий кафелрой Бельков С.А.

Программа одобрена на заседании методической комиссии радиофизического факультета от «9» декабря 2021 года, протокол № 07/21