МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_ «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт информационных технологий, математики и механики
УТВЕРЖДЕН
решением президиума Ученого совета ННІ
протокол № 1 от 16.01.2024
Рабочая программа дисциплины
Асимптотические методы теории колебаний и волн
Уровень высшего образования
5 ровень высшего образования Бакалавриат
Направление подготовки / специальность
01.03.02 - Прикладная математика и информатика
01.03.02 - Прикладная математика и информатика
Направленность образовательной программы
Прикладная математика и информатика (общий профиль)
прикладими математика и информатика (оощин профиль)
Форма обучения
очная

г. Нижний Новгород

2024 год начала подготовки

1. Место дисциплины в структуре ОПОП

Дисциплина Б1.В.ДВ.08.05 Асимптотические методы теории колебаний и волн относится к части, формируемой участниками образовательных отношений образовательной программы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Для текущего контроля успеваемости Собеседование Задачи Контрольная работа	Для промежуточной аттестации Зачёт: Контрольные вопросы
контроля успеваемости Собеседование Задачи Контрольная	промежуточной аттестации Зачёт: Контрольные
контроля успеваемости Собеседование Задачи Контрольная	промежуточной аттестации Зачёт: Контрольные
Контрольная	Контрольные

привлечением дополнительного материала, в том числе, с использование информационнотелекоммуникационной сети "Интернет" и других источников. – решать задачи и проблемы теории колебаний и волн, которые аналогичны ранее изученным в курсе; – решать задачи и проблемы теории колебаний и волн, которые аналогичны ранее изученным в курсе, но имеют более высокий уровень сложности. – использовать на практике асимптотические методы теории распространения и дифракции коротких волн для исследования волновых полей в плавно неоднородных средах с учетом рефракционных, дифракционных и дисперсионных эффектов; – решать нестандартные задачи и проблемы асимптотических методов теории волн, которые требуют некоторой оригинальности мышления;

Владеть:

– представлениями о современном состоянии и актуальных проблемах исследований колебательных и волновых процессов в различных областях физики; – навыками составления математических моделей, описывающих физические процессы в сосредоточенных и распределенных системах; – точными и приближенными методами поиска и анализа возможных решений уравнений теории колебаний и волн; – навыками целенаправленного поиска информации о новейших научных и

технологических

	достижениях в области	
	асимптотических методов	
	теории волн;	
	– математическими	
	методами обработки	
	экспериментальной	
	информации.	

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная
Общая трудоемкость, з.е.	2
Часов по учебному плану	72
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	16
- занятия семинарского типа (практические занятия / лабораторные работы)	16
- KCP	1
самостоятельная работа	39
Промежуточная аттестация	0
	Зачёт

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Наименование разделов и тем дисциплины	Всего (часы)	в том числе			
		Контактная работа (работа во взаимодействии с преподавателем), часы из них			
		Занятия лекционного типа	Занятия семинарского типа (практические занятия/лабора торные работы), часы	Всего	Самостоятельная работа обучающегося, часы
	о ф о	о ф о	о ф о	о ф о	о ф о
Тема 1. Осциллятор с медленно изменяющейся частотой.	6	1	1	2	4
Тема 2. Осциллятор с периодически изменяющейся частотой.	6	1	1	2	4
Тема 3. Движение в быстро осциллирующем поле.	6	1	1	2	4
Тема 4. Нелинейный осциллятор. Резонанс	5	1	1	2	3
Тема 5. Автоколебательные системы	5	1	1	2	3
Тема 6. Среды с временной дисперсией.	6	1	2	3	3
Тема 7. Волны в одномерных средах с плавно меняющимися параметрами	5	1	1	2	3
Тема 8. Геометрическая оптика плавно неоднородных сред.	6	1	2	3	3

Тема 9. Квазиоптические волновые пучки.		2	1	3	3
Тема 10. Распространение волновых пучков в плавно неоднородных средах.		2	1	3	3
Тема 11. Самофокусировка волновых пучков.	7	2	2	4	3
Тема 12. Темные и светлые солитоны. Представление о солитоне как о квазичастице.		2	2	4	3
Аттестация	0				
КСР	1			1	
Итого	72	16	16	33	39

Содержание разделов и тем дисциплины

- Тема 1. Осциллятор с медленно изменяющейся частотой.
- Тема 2. Осциллятор с периодически изменяющейся частотой.
- Тема 3. Движение в быстро осциллирующем поле.
- Тема 4. Нелинейный осциллятор. Резонанс
- Тема 5. Автоколебательные системы
- Тема 6. Среды с временной дисперсией.
- Тема 7. Волны в одномерных средах с плавно меняющимися параметрами.
- Тема 8. Геометрическая оптика плавно неоднородных сред.
- Тема 9. Квазиоптические волновые пучки.
- Тема 10. Распространение волновых пучков в плавно неоднородных средах.
- Тема 11. Самофокусировка волновых пучков.
- Тема 12. Темные и светлые солитоны. Представление о солитоне как о квазичастице.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает в себя подготовку к контрольным вопросам и заданиям для текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведенным в п. 5.

[В форме электронного документа доступна на сайте EdWorld «Мир математических уравнений», ИПМ РАН, 2004-2016, URL http://eqworld.ipmnet.ru/ru/library/physics/plasma.htm — свободный доступ]

- 3. Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред. М.: Наука, 1980. [В форме электронного документа доступна на сайте EdWorld «Мир математических уравнений», ИПМ РАН, 2004-2016, URL http://eqworld.ipmnet.ru/ru/library/physics/optics.htm свободный доступ]
- 5. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю)
- 5.1 Типовые задания, необходимые для оценки результатов обучения при проведении текущего контроля успеваемости с указанием критериев их оценивания:

5.1.1 Типовые задания (оценочное средство - Собеседование) для оценки сформированности компетенции ПК-4:

- 1. Колебательный контур с нелинейной емкостью или нелинейной индуктивностью.
- 2. Контакт Джозефсона.
- 3. Задача о самоиндуцированной прозрачности.
- 4. Универсальные модели консервативных колебаний вблизи минимума гладкого потенциала: осцилляторы с квадратичной нелинейностью и осцилляторы с кубической нелинейностью.
- 5. Осциллятор Дуффинга.
- 1. Обобщенная схема радиотехнического генератора.
- 7. Параметрические колебания в нелинейных системах. Нелинейный осциллятор с параметрическим возбуждением.
- 8. Параметрический генератор электромагнитных колебаний.
- 9. Оптические параметрические усилители и генераторы.
- 10. Двухконтурные параметрические генераторы.
- 11. Резонансное взаимодействие связанных слабонелинейных осцилляторов.
- 1. Соотношения Менли Роу

Критерии оценивания (оценочное средство - Собеседование)

Оценка	Критерии оценивания
зачтено	Студент дал развернутый ответ на все вопросы без существенных ошибок.
не зачтено	При ответе студент допускает существенные ошибки в основном материале.

5.1.2 Типовые задания (оценочное средство - Задачи) для оценки сформированности компетенции ПК-4:

Задача 1. Найти границы первой зоны неустойчивости для осциллятора с частотой, изменяющейся ступенчатым образом.

Задача 2. Найти границы второй зоны неустойчивости для осциллятора с частотой, изменяющейся по гармоническому закону.

Задача 3. Найти адиабатический инвариант и условия его применимости для движения электрона в медленно изменяющемся магнитном поле.

Задача 4. Найти адиабатический инвариант и условия его применимости для шарика, катающийся по горизонтальному столу между двумя стенками, одна из которых медленно колеблется.

Задача 5. Оценить глубину проникновения квазимонохроматического поля с амплитудой E_0 в плоскослоистою среду, показатель преломления которой изменяется по линейному закону.

Задача 6. Исследовать поведение физического маятника с длинной L, точка подвеса которого a) колеблется вертикально, b) колеблется горизонтально и c) вращается по окружности с частотой ω , предполагая, что ω^2 существенно превосходит величину L/g.

Критерии оценивания (оценочное средство - Задачи)

Оценка	Критерии оценивания
зачтено	Выполнены все или большая часть этапов решения задачи или задача решена с незначительными недочетами. Результаты представлены в срок.
не зачтено	Выполнены не все практические задания или выполнены не в полном объеме.

5.1.3 Типовые задания (оценочное средство - Контрольная работа) для оценки сформированности компетенции ПК-4:

Задача 1.

Описать процесс перестройки частоты у плоской волны, налетающей на фронт ионизации, если он движется навстречу a) с «досветовой» и b) со «сверхсветовой» скоростью.

Задача 2.

Найти структуру фронта ударной волны для уравнения Бюргерса и скорость его движения.

Задача 3.

Найти семейство солитонов уравнения Кортевега-де Вриза. Найти интегралы движения исходного уравнения, которые отвечают импульсу и энергии солитона.

Задача 4.

Найти структуру ударной волны и форму солитона уравнения Бюргерса – Кортевега-де Вриза.

Критерии оценивания (оценочное средство - Контрольная работа)

Оценка	Критерии оценивания
зачтено	Выполнена основная часть задания с незначительными недочетами.
не зачтено	Выполнено меньше половины работы.

5.2. Описание шкал оценивания результатов обучения по дисциплине при промежуточной аттестации

Шкала оценивания сформированности компетенций

Уровен ь сформи рованн ости компет енций (индик атора достиж ения	плохо не зач	неудовлетвор ительно тено	удовлетво рительно	хорошо	очень хорошо зачтено	отлично	превосходно
компет енций)							
Знания	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки	Минимальн о допустимы й уровень знаний. Допущено много негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько несуществе нных ошибок	Уровень знаний в объеме, соответств ующем программе подготовк и. Ошибок нет.	Уровень знаний в объеме, превышающе м программу подготовки.
Умения	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы основные умения. Имели место грубые ошибки	Продемонс трированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме	Продемонс трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи с отдельным и несуществ енными недочетам и, выполнен ы все задания в полном объеме	Продемонстр ированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
Навыки	Отсутствие базовых навыков. Невозможность оценить наличие навыков вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы базовые навыки. Имели место грубые ошибки	Имеется минимальн ый набор навыков для решения стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и	Продемонс трированы базовые навыки при решении стандартны х задач без ошибок и недочетов	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов	Продемонстр ирован творческий подход к решению нестандартны х задач

Шкала оценивания при промежуточной аттестации

Oı	ценка	Уровень подготовки
зачтено	превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно», продемонстрированы знания, умения, владения по соответствующим компетенциям на уровне выше предусмотренного программой

	отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично».		
	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо»		
	жорошо Все компетенции (части компетенций), на формирование которых и дисциплина, сформированы на уровне не ниже «хорошо».			
	удовлетворитель но	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»		
не зачтено	неудовлетворите льно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно».		
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»		

5.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения на промежуточной аттестации с указанием критериев их оценивания:

5.3.1 Типовые задания (оценочное средство - Контрольные вопросы) для оценки сформированности компетенции $\Pi K\text{-}4$

1.	Лагранжев и гамильтонов формализм при описании движения системы материальных точек.
1.	Канонические переменные действие, угол.
1.	Адиабатический инвариант для осциллятора с медленно изменяющейся частотой.
1.	Осциллятор с периодически изменяющейся частотой. Уравнение Хилла и теорема Флоке.
1.	Параметрический резонанс и представление о зонах неустойчивости.
1.	Уравнение Матье и границы первой зоны неустойчивости.
1.	Движение в быстро осциллирующем поле. Понятие о пондеромоторной силе.
1.	Маятника Капицы и его состояния равновесия.
1.	Колебательный контур с нелинейной емкостью или нелинейной индуктивностью.
1.	Контакт Джозефсона.
1.	Задача о самоиндуцированной прозрачности.
1.	Универсальные модели консервативных колебаний вблизи минимума гладкого потенциала: осцилляторы с квадратичной нелинейностью.

1. Осциллятор Дуффинга.
1. Вынужденные колебания линейного и нелинейного осциллятора. Понятие о резонансе.
1. Укороченные уравнения и резонансные кривые.
1. Квазигармонические и релаксационные колебания в автоколебательных системах.
1. Обобщенная схема радиотехнического генератора.
1. Ламповый генератор Ван дер Поля. Уравнения Ван дер Поля.
1. Автогенератор на активном элементе с отрицательной дифференциальной проводимостью.
1. Уравнение Рэлея.
1. Бифуркация Андронова – Хопфа.
1. Фазовые портреты для консервативного и диссипативного нелинейного осциллятора. Типы возможных состояний равновесия.
1. Движение по сепаратрисе для физического маятника.
1. Разложение в ряд по степеням параметра нелинейности для осциллятора с квадратичной нелинейностью.
1. Разложение в ряд по степеням параметра нелинейности для осциллятора с кубической нелинейностью.
1. Метод многих масштабов.
1. Метод Ван дер Поля.
1. Модель Френкеля – Конторовой. Цепочки связанных осцилляторов.
1. Представление о волнах в распределенных системах.
1. Среды с временной (частотной) дисперсией. Волновое уравнение для сред с временной дисперсией.
1. Дифференциальная форма материального уравнения.
1. Дисперсионное уравнение. Понятие о фазовой и групповой скорости.
1. Распространение квазимонохроматического импульса в длинноволновом приближении.
1. Расплывание волновых пакетов. Метод моментов.

1. Уравнение для огибающей импульса и его функция Грина.	
1. Гауссов импульс (автомодельное решение уравнения для огибающей). Прямоугольный с	сигнал.
1. Импульс с начальной фазовой модуляцией и его эффективное сжатие.	
1. Уравнения Максвелла.	
1. Волновое уравнение. Скалярное уравнение Гельмгольца.	
1. Необходимые условия применимости геометрической оптики для монохроматических п	олей.

Критерии оценивания (оценочное средство - Контрольные вопросы)

Оценка	Критерии оценивания
зачтено	Уровень знаний в объеме, соответствующем программе подготовки. Допущено несколько негрубых ошибок
не зачтено	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература:

- 1. Кузнецов Александр Петрович. Линейные колебания и волны: сб. задач: учеб. пособие для вузов. М.: Физматлит, 2001. 128 с. (Современная теория колебаний и волн). Федеральная целевая программа "Государственная поддержка интеграции высшего образования и фундаментальной науки на 1997-2000 гг.". ISBN 5-94052-023-5: 15.00., 49 экз.
- 2. Гинзбург Виталий Лазаревич. Распространение электромагнитных волн в плазме. М. : Физматгиз, 1960. 552 с. : с черт. 2.00., 2 экз.
- 3. Кравцов Юрий Александрович. Геометрическая оптика неоднородных сред. М.: Наука, 1980. 304 с.: ил. 3.30., 2 экз.
- 4. Теория волн : [учеб. пособие для физ. специальностей вузов]. 2-е изд., перераб. и доп. М. : Наука, 1990. 432 с. : граф. ISBN 5-02-014050-3 (в пер.) : 3.10., 4 экз.

Дополнительная литература:

1. Виноградова Марианна Брониславовна. Теория волн : [учеб. пособие для физ. специальностей ун-тов] . - М. : Наука, Гл. ред. физ.-мат. лит., 1979. - 383 с. : ил. - 1.10., 145 экз.

Программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины):

программное обеспечение и Интернет-ресурсы EdWorld «Мир математических уравнений», ИПМ РАН, 2004-2016, URL

http://eqworld.ipmnet.ru/ru/library — свободный доступ Современная цифровая образовательная среда РФ. [сайт]. Учебные курсы. URL: https://online.edu.ru/public/courses?faces-redirect=true

7. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены мультимедийным оборудованием (проектор, экран), техническими средствами обучения, компьютерами.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ОС ННГУ по направлению подготовки/специальности 01.03.02 - Прикладная математика и информатика.

Автор(ы): Смирнов Лев Александрович, кандидат физико-математических наук.

Рецензент(ы): д.т.н., профессор НГТУ им. Р.Е. Алексеева Ломакина Л.С.

Заведующий кафедрой: Осипов Григорий Владимирович, доктор физико-математических наук.

Программа одобрена на заседании методической комиссии от 13.12.2023, протокол № 3.