МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

«»	20_	г.
	Матросов Е	3.B.
Декан радиофизиче	ского факульт	ета
	УТВЕРЖДА	Ю:

Рабочая программа дисциплины

Физика

Уровень высшего образования **бакалавриат**

Направление подготовки **02.03.02Фундаментальная информатика и информационные технологии**

Направленность программы **Информационные системы и технологии**

Квалификация **бакалавр**

Форма обучения очная

Нижний Новгород 2022

1. Место и цели дисциплины в структуре ОПОП

Данная дисциплина относится к обязательным дисциплинам основной образовательной программы в 1 и 2 семестре.

Целью изучения курса физики является создание целостной системы знаний, формирующей физическую картину окружающего мира, умение строить физические модели и решать конкретные задачи заданной степени сложности. Физика - одна из основных естественных наук. Будучи фундаментальной дисциплиной, физика является основой для целого ряда профессиональных и специальных дисциплин. Одна из основных задач курса - подготовка слушателей к последующему успешному изучению дисциплин, требующих предварительного изучения физики.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (Код компетенции, этап формирования)	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ПК-6 Способен планировать необходимые ресурсы и этапы выполнения работ в области информационно-коммуникационных технологий, составлять	31 (ПК-6) Знать основные физические законы, их математическое выражение и границы применимости; физические модели, отражающие свойства реального мира. 32 (ПК-6) Знать основные методы решения
соответствующие технические описания и инструкции Этап формирования базовый	физических задач и проведения физического эксперимента. У1 (ПК-6) Уметь практически применять теоретические знания и методы
	экспериментального исследования. У2 (ПК-6) Уметь решать основные типы физических задач,проводить измерения и обрабатывать результаты при проведении физического эксперимента.
	В1 (ПК-6) Владеть навыками применения математического аппарата для решения физических задач. В2 (ПК-6) Владеть навыками работы в составе коллектива.

3. Структура и содержание дисциплины

Объем дисциплины составляет 8 зачетных единиц, всего 288 часов, из которых 231 час составляет контактная работа обучающегося с преподавателем (64 часа занятия лекционного типа, 64 часа занятия семинарского типа,в том числе 4 часа - мероприятия текущего контроля успеваемости, 99 часов - мероприятия промежуточной аттестации), 57 часов составляет самостоятельная работа обучающегося.

Содержание дисциплины (модуля)

	-		актная раб			ота		
		взаимодействии с преподавателем), часы						
Наименование и краткое содержание разделов и тем дисциплины, форма промежуточной аттестации по дисциплине	Всего (часы)	Занятия лекционного	Занятия семинарского	Занятия лабораторного	Всего	обучающегося, часыСамостоятельная работа		
1. Механика	88	32	32		64	24		
2. Молекулярная физика и термодинамика	97	32	32		64	33		
В т.ч. текущий контроль	4		4		4			
Промежуточная аттестация – з	жзамен				•			

4. Образовательные технологии

В процессе изучения дисциплины используются следующие образовательные технологии: проблемный метод изложения материала и диалогичная форма проведения занятий. Лекционные занятия предусматривают демонстрацию физических опытов, а также использование проекционной аппаратуры для презентации таблиц, схем, рисунков, фото и видео материалов.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает следующие виды:

- разбор материала семинарских занятий,
- изучение дополнительных разделов дисциплины с использованием учебной литературы,
- выполнение домашних заданий по решению задач.

Текущий контроль усвоения материала проводится путем проведения контрольных работ во время практических занятий и проверки выполнения домашних заданий.

Примеры контрольных заданий:

M-41. Вертикальный столб высотой подпиливается у основания и падает на землю. Определить линейную скорость его верхнего конца в момент удара о землю. Какая точка столба будет в этот момент иметь ту же скорость, какую имело бы тело, падая с той же высоты, как и данная точка?

- Ц-14. Цикл, совершаемый одним киломолем идеального одноатомного газа, состоит из двух изохор и двух изобар. Найти совершаемую газом работу A и КПД цикла η . Известно, что в пределах цикла максимальные значения объема и давления газа в два раза больше минимальных значений, равныхр $_{\min} = 1$ атм, $V_{\min} = 0.5$ м 3 .
 - В-1. Скорость и ускорение материальной точки.
 - В-2. Тангенциальное и нормальное ускорения материальной точки.
- 6. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:
- 6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования.

ПК-6 Способность планировать необходимые ресурсы и этапы выполнения работ в области информационно-коммуникационных технологий, составлять соответствующие технические описания и инструкции

	Критерии оценивания (дескрипторы)						
Индикаторы	«плохо»	«неудовл	«удовлетв	«хорошо»	«очень	«отлично	«превосхо
компетенции		етворите	орительн	_	хорошо»	»	дно»
		льно»	o»		_		,,
Знать 1. основные физические законы, их математическое выражение и границы применимости; физические модели, отражающие свойства реального мира. 2. основные методы решения физических задач и проведения	Отсутст вие необход имых знаний	наличие грубых ошибок в основном материале	Знание основного материала с рядом негрубых ошибок	Знание основного материало м с рядом заметных погрешно стей	Знание основного материала с незначите льными погрешно стями	Знание основного материала без ошибок и погрешно стей	Знание основног о и дополнит ельного материал а без ошибок и погрешно стей
физического эксперимента. Уметь 1.практически применять теоретические знания и методы экспериментального исследования. 2. решать основные типы физических задач,проводить измерения и обрабатывать результаты при проведении физического эксперимента.	Полное отсутств ие требуем ых умений	Грубые ошибкипр и попытках применит ь умения	Негрубые ошибкипр и попытках применит ь умения	Заметные погрешно стипри попытках применит ь умения	Незначите льные погрешно сти при попытках применит ь умения	Применен ие умений без погрешно стей	Примене ние умений без погрешно стей и их развитие за рамки программы курса
Владеть 1. навыками применения	Полное отсутств ие	Фрагмент арное владение	Наличие минималь ных	Владение навыками с	Владение навыками с	Владение навыками без	Владение навыками без

математического	необход	навыками	навыков	заметным	незначите	погрешно	погрешно
аппарата для	имых			И	ЛЬНЫМИ	стей	стей, а
решения	навыков			погрешно	погрешно		также
физических задач.				СТЯМИ	СТЯМИ		развитие
2. навыками работы							навыков
в составе							3a
коллектива.							рамками
							программ
							ы курса
Шкала оценок по							
проценту правильно							
выполненных	0 - 20%	21 – 50%	51 – 70%	71-80%	81 – 90%	91 – 99%	100%
контрольных							
заданий							

6.2. Описание шкал оценивания результатов обучения по дисциплине

Итоговый контроль качества усвоения студентами содержания дисциплины проводится в виде зачета, на котором определяется:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала;
- способностьстудентов использовать полученные знания для решения конкретных задач.

Экзамен проводится в устной форме и заключается в ответе студентом на теоретические вопросы курса (с предварительной подготовкой), решении задачи (с предварительной подготовкой) и последующем собеседовании в рамках тематики курса. Собеседование проводится в форме вопросов, на которые студент должен дать краткий ответ.

Превосходно	Превосходная подготовка без недочетов
Отлично	Отличная подготовка без погрешностей
Очень хорошо	В целом хорошая подготовка с незначительными погрешностями
Хорошо	Хорошая подготовка, но с рядом заметных погрешностей.
Удовлетворительно	Подготовка, удовлетворяющая минимальным требованиям
Неудовлетворительно	Необходима дополнительная подготовка для успешного
_	прохождения испытания
Плохо	Подготовка совершенно недостаточная

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде знаний используются: индивидуальное собеседование (ПК-6), домашние задания ПК-6), контрольные работы (ПК-6) и разноуровневые задачи и задания ПК-6).

Для оценивания результатов обучения в виде умений используются: индивидуальное собеседование (ПК-6), практические контрольные задания и разноуровневые задачи и задания (ПК-6).

Для оценивания результатов обучения в виде владений используются: индивидуальное собеседование (ПК-6), комплексные практические задания (ПК-6).

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Контрольные вопросы для аттестации по итогам освоения дисциплины:

- 1. Скорость и ускорение материальной точки.
- 2. Тангенциальное и нормальное ускорения материальной точки.
- 3. Угловая скорость и угловое ускорение материальной точки.
- 4. Преобразование скоростей и ускорений при переходе из одной системы отсчета в другую.
- 5. І закон Ньютона. Инерциальные системы отсчета.
- 6. ІІ закон Ньютона. Понятия силы и инертной массы.
- 7. III закон Ньютона.
- 8. Движение материальной точки под действием постоянной силы.
- 9. Движение материальной точки под действием силы, пропорциональной скорости.
- 10. Движение материальной точки под действием квазиупругой силы, гармонический осциллятор.
- 11. Уравнение моментов для материальной точки. Закон сохранения момента импульса.

- 12. Механическая работа и мощность.
- 13. Потенциальная энергия материальной точки.
- 14. Теорема об изменении кинетической энергии материальной точки.
- 15. Механическая энергия, теорема об изменении механической энергии. Закон сохранения механической энергии.
- 16. Закон Кулона. Напряженность электрического поля. Потенциал.
- 17. Вектор индукции магнитного поля, сила Лоренца.
- 18. Действие магнитного поля на проводник с током, сила Ампера.
- 19. Момент сил, действующих на рамку с током в магнитном поле.
- 20. Движение заряженной частицы в однородном магнитном поле.
- 21. Дрейфовое движение в скрещенных электрическом и магнитном полях. Эффект Холла.
- 22. Деформации растяжения-сжатия. Закон Гука.
- 23. Сухое трение. Законы Амонтона-Кулона. Трение скольжения.
- 24. Вязкое трение, формула Ньютона.
- 25. Ламинарное течение вязкой жидкости в трубе, формула Пуазейля.
- 26. Силы, действующие на тела, движущиеся в вязкой среде. Закон Стокса.
- 27. Закон всемирного тяготения. Эквивалентность гравитационной и инертной масс.
- 28. Законы Кеплера. І и ІІ космические скорости.
- 29. Неинерциальная система отсчета, поступательно движущаяся относительно инерциальной. Переносная сила инерции. Эквивалентность сил инерции и тяготения.
- 30. Вращающаяся система отсчета. Теорема Кориолиса (без вывода). Центробежная и кориолисова силы инерции.
- 31. Земля как неинерциальная система отсчета.
- 32. Опыт Майкельсона. Постулаты СТО.
- 33. Преобразования Лоренца. Относительность одновременности двух событий.
- 34. Преобразования Лоренца. Сокращение длины движущегося тела.
- 35. Преобразования Лоренца. Замедление хода движущихся часов.
- 36. Релятивистский закон преобразования скоростей при переходе из одной системы отсчета в другую.
- 37. Интервал между событиями.
- 38. Релятивистский импульс.
- 39. Релятивистское уравнение движения. Пример ускорение заряженной частицы электрическим полем.
- 40. Связь релятивистской массы с энергией, энергии с импульсом.
- 41. Теорема об изменении импульса с.м.т. Условия сохранения импульса.
- 42. Теорема о движении центра масс.
- 43. Уравнение Мещерского. Реактивная сила.
- 44. Теорема об изменении момента импульса с.м.т. Закон сохранения момента импульса.
- 45. Теорема об изменении кинетической энергии с.м.т.
- 46. Потенциальная энергия с.м.т. Теорема об изменении механической энергии с.м.т. Условия сохранения механической энергии.
- 47. Абсолютно неупругое соударение двух частиц. Абсолютно упругое лобовое соударение двух частиц.
- 48. Уравнение Бернулли.
- 49. Уравнение вращательного движения твердого тела вокруг неподвижной оси. Момент инерции, примеры его вычисления.
- 50. Теорема Гюйгенса-Штейнера.
- 51. Кинетическая энергия и работа при вращении твердого тела вокруг неподвижной оси.
- 52. Кинематика плоского движения твердого тела. Мгновенная ось вращения.
- 53. Уравнения динамики плоского движения твердого тела. Кинетическая энергия твердого тела при плоском движении.
- 54. Приближенная теория гироскопа. Прецессия гироскопа.

- 55. Распределение молекул по объёму сосуда в отсутствие внешних силовых полей. Флуктуации числа молекул.
- 56. Распределение Максвелла по проекции вектору скорости.
- 57. Распределение Максвелла по модулю скорости. Наиболее вероятная, средняя и средняя квадратичная скорости.
- 58. Распределение Больцмана, барометрическая формула.
- 59. Давление идеального газа. Уравнение Клапейрона-Менделеева.
- 60. Внутренняя энергия идеального газа и ее связь с температурой.
- 61. Средняя длина свободного пробега молекул в газах.
- 62. Диффузия в газах. Закон Фика, расчёт коэффициента диффузии.
- 63. Внутреннее трение в газах. Формула Ньютона, расчет вязкости.
- 64. Броуновское движение. Формула Эйнштейна.
- 65. Классическая теория теплоемкости газов. Теорема о равнораспределении энергии по степеням свободы. Недостатки классической теории теплоемкости.
- 66. Общий и нулевой принципы термодинамики. Измерение температуры. Классификация процессов.
- 67. Первый принцип термодинамики. Внутренняя энергия идеального газа. Примеры применения: соотношение Майера, уравнение адиабатического процесса.
- 68. Второй принцип термодинамики. Формулировки для тепловых двигателей и холодильных машин.
- 69. Цикл Карно и его КПД. Первая теорема Карно.
- 70. Необратимые циклы, вторая теорема Карно.
- 71. Уравнение Ван-дер-Ваальса и его свойства. Фазовые переходы.
- 72. Внутренняя энергия газа Ван-дер-Ваальса.
- 73. Приведенное количество теплоты. Равенство Клаузиуса. Энтропия. Энтропия идеального газа.
- 74. Неравенство Клаузиуса. Закон возрастания энтропии (с примерами).

Для оценки сформированности компетенцийиспользуются контрольные задания, примеры которых приведены в пункте 5.

Полный комплект оценочных средств представлен в ФОНДЕ оценочных средств по дисциплине «Физика»

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Сивухин Д.В. Общий курс физики, т.1, 2, 3, ФИЗМАТЛИТ/МФТИ, 2005.(41)
- 2. Иродов И.Е. Основные законы механики. М.: Высшая школа, 1997.(20)
- 3. Иродов И.Е. Физика макросистем. Основные законы. Бином, 2006(7).
- 4. Иродов И.Е. Задачи по общей физике. М., Наука, 1988.(268)
- 5. Сборник задач по общему курсу физики. Механика. Под ред. И.А.Яковлева. М.: Наука, 1977.(27)

б) дополнительная литература:

- 1. Савельев И.В. Курс общей физики, т.1-3. М.: Наука, 1989(108).
- 2. Матвеев А.Н. Механика и теория относительности. М.: Высшая школа, 1976.(4)
- 3. Матвеев А.Н. Молекулярная физика. М.: Высшая школа, 1981.(42)

в) программное обеспечение и Интернет-ресурсы:

http://cyberleninka.ru

http://egworld.ipmnet.ru/ru/library

8. Материально-техническое обеспечение дисциплины

Для обучения дисциплине имеются специальные помещения для проведения занятий лекционного типа, практических занятий, текущего контроля и промежуточной аттестации, а также Центр физических демонстраций, включающий в себя Демонстрационный физический кабинет и Лабораторию технического сопровождения лекционного процесса.

Специальные помещения укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления информации большой аудитории.

Программа составлена в соответствии с требованиями ОС ННГУ с учетом рекомендаций и ОПОП ВПО по направлению 02.03.02 Фундаментальная информатика и информационные технологии.

Автор	Жуков С.Н.
Рецензент	Демин И.Ю.
Заведующий кафедрой	Бакунов М.И.

Программа одобрена на заседании методической комиссии Радиофизического факультета. Протокол заседания методической комиссии радиофизического факультета от $\underline{25}$ $\underline{\Phi}$ $\underline{\Phi$