МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет

Кафедра физики полупроводников, электроники и наноэлектроники

УТВЕРЖДЕНО решением ученого совета ННГУ протокол № 4 от «14» декабря 2021 г.

Рабочая программа дисциплины «Теоретические основы электро- и радиотехники»

Уровень высшего образования бакалавриат

Направление подготовки: 28.03.01 Нанотехнологии и микросистемная техника Направленность (профиль): материалы микро- и наносистемной техники

Форма обучения: очная

Нижний Новгород, 2022

1. Место и цели дисциплины в структуре ОПОП

Дисциплина «Теоретические основы электро- и радиотехники» относится к обязательным дисциплинам формируемой участниками образовательных отношений части основной образовательной программы по направлению 28.03.01 «Нанотехнологии и микросистемная техника». Данная дисциплина преподаётся в пятом семестре и является одной из учебных программ в области профессионального курса.

Для усвоения курса «Теоретические основы электро- и радиотехники» необходимы знания в области математического анализа, дифференциальных уравнений, методов математической физики. Всестороннее овладение данной дисциплиной является необходимым условием для широкого кругозора и последующего овладения студентами многих дисциплин профессионального цикла и курсов по выбору, в особенности курсов «Электродинамики», «Физические основы электроники», «Наноэлектроники», «Основ проектирования электронной компонентной базы», «Электроники СВЧ».

Курс «Теоретические основы электро- и радиотехники» опирается на следующие дисциплины:

- математический анализ, дифференциальные уравнения, методы математической физики, теория функций комплексной переменной;
- физика твердого тела;
- физика: электричество, колебания и волны;
- электродинамика;

Дисциплина «Теоретические основы электро- и радиотехники» направлена на формирование у студентов систематизированных знаний в области распространения радиоволн, передачи радиосигналов, ознакомление студентов с элементной базой электротехники и радиоэлектроники, методами расчета электрических цепей и электронных схем, принципами построения радиотехнических устройств, принципами модуляции и детектирования модулированных сигналов.

Целями освоения дисциплины «Теоретические основы электро- и радиотехники» являются:

- формирование у студентов комплекса теоретических знаний и практических навыков, необходимых для понимания основных закономерностей в исследовании радиотехнических цепей, обеспечивающих создание, передачу и обработку информации. Владение основными принципами построения структурных блоков радиотехнических устройств с учетом функциональных особенностей при аналоговом и цифровом преобразовании сигналов;
- Освоение студентами основ теоретических методов анализа прохождения радиосигналов через линейные и нелинейные радиотехнические цепи, знание процессов, происходящих при передаче сигналов различной сложности.
- Знание элементной базы электронных приборов и их основных характеристик. Выработка у студентов практических навыков сборки электрических цепей, начиная от простых до более сложных.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код, содержание	Планируемые результать (модулю), в соответствии компетенции	Наименование оценочного средства	
компетенции)	Индикатор достижения компетенции (код, содержание индикатора) ПК-2.1. Знает основы	Результаты обучения по дисциплине 31 (ПК-2) Знать основные	Вопросы по
Способен проводить физико- математическое моделирование исследуемых процессов нанотехнологии и объектов нано- и микросистемной техники с использованием современных компьютерных технологий	физико-математического моделирования объектов нано- и микросистемной техники. ПК-2.2. Умеет строить физические и математические модели исследуемых процессов нанотехнологии и объектов нано- и микросистемной техники ПК-2.3. Владеет навыками использования стандартных программных средств компьютерного моделирования	физические принципы расчета и анализа радиотехнических цепей У1 (ПК-2) Уметь применять полученные теоретические знания и математический аппарат к исследованию процессов при прохождении различных сигналов через радиотехнические цепи; В1 (ПК-3) Владеть навыками использования теоретических основ базовых разделов математики и естественнонаучных дисциплин при решении задач расчета и анализа радиотехнических цепей	темам/разделам дисциплины. Комплект задач и заданий к лабораторному практикуму. Фонд тестовых заданий

3. Структура и содержание дисциплины «Теоретические основы электро- и радиотехники»

3.1 Трудоемкость дисциплины

Общая трудоемкость	5 3ET
Часов по учебному плану	180
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	48
- лабораторный практикум	64
- контроль самостоятельной работы	2
самостоятельная работа	36 (работа в семестре)
	30 (на подготовку к экзамену)
Промежуточная аттестация	экзамен

3.2. Содержание дисциплины

Наименование и краткое содержание	Всего			В то	м числе		
разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине (модулю)	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них				н работа асы	
дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Консультации	Всего	Самостоятельная работа обучающегося, часы
1. Введение в дисциплину	8	2	-	-		2	6
2. Классификация сигналов. Детерминированные и случайные сигналы.	18	4	-	6		10	8
3. Спектральное представление сигналов.	16	4	-	6		10	6
4. Классификация, основные свойства и методы расчета электрических цепей.	22	6	-	8		14	8
5. Магнитные цепи, электромагнитная индукция.	12	2	-	4		6	6
6. Четырехполюсники и линейные фильтры.	14	4		6		10	4
7. Анализ электрических цепей с распределенными параметрами.	12	4	-	4		8	4
8. Нелинейные цепи и методы их анализа.	20	8	-	8		16	4
9. Усилители электрических сигналов.	18	6		6		12	6
9. Обратная связь в усилителях, генераторы.	18	4	-	8		12	6
10. Преобразователи частоты, Модуляция и детектирование сигналов.	20	4		8		12	8
Промежуточная аттестация: экзамен	ı - 2 часа	Į.					

Содержание разделов дисциплины:

1. Введение в дисциплину

Радиоэлектроника как наука о передаче, преобразовании и приеме информации с помощью электрических и электромагнитных процессов. Процессы, протекающие в радиоэлектронных устройствах и в пространстве - задачи радиоэлектроники. Радиотехнический канал связи, преобразования сигналов в каналах проводной и радиосвязи. Диапазоны радиоволн и особенности их распространения.

- 2. Электрические и радиотехнические цепи
 - 2.1. Понятие детерминированного, случайного, дискретного сигналов. Периодический и непериодический сигналы.
 - 2.2. Примеры радиотехнических сигналов: гармонический, прямоугольный, ступенчатый (единичная функция включения), короткий импульс $-\delta$ функция Дирака.

Динамическое описание непрерывного сигнала с помощью δ -функции и 1(t)-единичной ступенчатой функции. Понятие радио и видеоимпульса.

- 3. Спектральное представление сигналов.
 - 3.1. Периодические сигналы: математическое и физическое понятия периодического сигнала, представление суммой гармонических колебаний, ряд Фурье в действительной и комплексной форме, понятие спектра периодического сигнала. Интеграл Дюамеля и метод интегрального преобразования Фурье.
 - 3.2. Распределение энергии в спектре сигнала, практическая ширина спектра.
 - 3.3. Непериодические сигналы: Понятие детерминированного непериодического сигнала, преобразования Фурье, спектральная плотность, непрерывность спектра; спектр сигнала включения, прямоугольного импульса, d -функции.
 - 3.4. Свойства преобразований Фурье. Распределение энергии в спектре непериодического сигнала. Модулированные колебания, виды модулированных сигналов.
- 4. Классификация, основные свойства и методы расчета электрических цепей.
 - 4.1. Уравнения связи между входными и выходными токами и напряжениями.

Типы и элементы цепей, понятия источника ЭДС и источника тока. Многофазные цепи. Методы расчета симметричных и несимметричных трехфазных цепей.

- 4.2. Воздействие и реакция цепи. Общее уравнение цепи, задачи исследования. Линейные цепи с сосредоточенными параметрами.
- 4.3. Методы анализа линейных цепей (временной и спектральный или частотный). Интеграл Дюамеля. Эквивалентные преобразования цепей. Законы Кирхгофа для расчета цепей.
- 4.4. Энергетические процессы в цепи при гармоническом воздействии
- 5. Магнитные цепи, электромагнитная индукция.
 - 5.1. Основные величины, характеризующие магнитное поле. Магнитодиэлектрики и ферриты. Закон полного тока. Магнитодвижущая (намагничивающая) сила.
 - 5.2. Построение вебер-амперных характеристик. Законы Кирхгофа для магнитных цепей. Определение потока в неразветвленной магнитной цепи по заданной МДС.
 - 5.3. Расчет разветвленной магнитной цепи методом двух узлов. Магнитное сопротивление и магнитная проводимость участка магнитной цепи. Закон Ома для магнитной цепи. Явление электромагнитной индукции.
 - 5.4. Явление самоиндукции и ЭДС самоиндукции. Индуктивность. Явление взаимоиндукции и ЭДС взаимоиндукции. Взаимная индуктивность Цепи с трансформаторами.
- 6. Четырехполюсники и линейные фильтры.
 - 6.1. Понятие четырехполюсника, уравнения, матричная форма, системы параметров классические и волновые. Свойства пассивных четырехполюсников, соединения четырехполюсников, характеристики четырехполюсников. Частотные характеристики цепей. Понятия активного, реактивного и комплексного сопротивлений (на примере RLC цепи). Связь частотных и временных характеристик линейных цепей.
 - 6.2. Понятие комплексного коэффициента передачи в общем случае, его амплитудночастотная (АЧХ) и фазово-частотная (ФЧХ) характеристики Частотные характеристики дифференцирующей (фильтр верхних частот) и интегрирующей (фильтр нижних частот) цепей, полоса пропускания, частоты среза.
 - 6.3. Частотные свойства последовательного и параллельного колебательного контура, резонансная и фазовая кривые (АЧХ и ФЧХ), резонансная частота. Фильтры на основе связанных колебательных систем, виды связи, коэффициент связи. Уравнения индуктивно связанных контуров, коэффициент передачи связанной системы, полоса пропускания при различных значениях коэффициента связи. Характеристическое сопротивление; затухание, добротность и ее физический смысл.
- 7. Анализ электрических цепей с распределенными параметрами

- 7.1. Понятие цепей с распределенными параметрами, телеграфное уравнение, волновое уравнение, падающая и отраженная волны, скорость распространения и длина волны в линии, волновое сопротивление, входное сопротивление линии, условие отсутствия отраженных волн.
- 7.2. Свойства и применения короткозамкнутой и разомкнутой линий без потерь. Условия получения максимальной мощности в нагрузке, связанной с генератором, с помощью длинной линии. Распределение волны в линии : коэффициент отражения, коэффициент стоячей волны (КСВ).
- 7.3. Измерения с помощью длинной линии. Примеры линий передачи сигналов: радиоволновые, волноводные, волоконнооптические. Информационные каналы, многоканальные системы, уплотнение и разделение каналов.
- 8. Нелинейные цепи и методы их анализа.
 - 8.1. Полупроводниковые диоды: вольтамперные характеристики диода, стабилитрона; варикап; эквивалентная схема диода, диод с барьером Шоттки. Туннельный диод.
 - 8.2. Биполярные транзисторы: структура, токи, вольтамперные характеристики (ВАХ) в схеме с общей базой (ОБ) и общим эмиттером (ОЭ); режимы работы транзистора-активный, насыщения и отсечки тока, инверсный. Понятие рабочей точки транзистора, нагрузочной прямой, механизм усиления, Н-параметры. Уравнение линейной части ВАХ, эквивалентная схема транзистора, частотная зависимость коэффициента передачи тока.
 - 8.3. Полевые транзисторы: механизм работы транзисторов с р-п затвором, с изолированным затвором, вольтамперные характеристики, рабочая точка, нагрузочная прямая, уравнение линейной части ВАХ, эквивалентные схемы.
 - 8.4. Аппроксимация вольт-амперных характеристик: полиномиальная, графическое выделение четной и нечетной части; трансцендентными функциями; кусочнолинейная.
- 9. Усилители электрических сигналов.
 - 9.1. Классификация усилителей по типу усиливаемого сигнала (усилитель постоянного тока, звуковых частот, резонансный, полосовой и т.д.); по энергетике (усилитель мощности, тока, напряжения); по типу управляющего элемента.
 - 9.2. Усилители на биполярных транзисторах (БПТ). Схемы включения с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК). Малосигнальные эквивалентные схемы усилительных каскадов.
 - 9.3. Понятия амплитудно-частотной и фазово-частотной характеристик усилителей, полосы пропускания, коэффициента частотных (линейных) искажений, влияние цепей связи, входных проводимостей транзисторов, частотных свойств коэффициентов передачи тока (для БПТ) на частотные характеристики схемы в целом. Понятие амплитудной характеристики, коэффициента нелинейных искажений, динамического диапазона. Коэффициент шума усилителей.
- 10. Обратная связь в усилителях, генераторы.
 - 10.1. Положительная и отрицательная обратная связь, стабильность и устойчивость усилителей с обратной связью, критерий Найквиста. Способы подключения обратной связи по току и по напряжению.
 - 10.2. Дифференциальный усилительный каскад. Операционные усилители, (коэффициент усиления, входное и выходное сопротивления). Схемы включения: инвертирующая схема расчет коэффициента усиления, входного сопротивления; инвертирующий усилитель, суммирующий усилитель. Неинвертирующий усилитель, идеальный повторитель, генератор, интегратор, дифференциатор.
 - 10.3. Принципиальная схема автоколебательной системы (АКС). АКС как усилитель с положительной обратной связью. Дифференциальное уравнение, понятие об отрицательном затухании, условие самовозбуждения и стационарности колебаний.

Баланс фаз и амплитуд: понятие о колебательной характеристике и прямой обратной связи, условие стационарности амплитуды. Мягкий и жесткий режимы

- 10.4. Генераторы с внутренней обратной связью. Применение двухполюсников с падающим участком ВАХ для генерации колебаний.
- 11. Преобразователи частоты, модуляция и детектирование сигналов.
 - 11.1. Преобразование частоты, нелинейное преобразование. Перемножители сигналов.
 - 11.2. Основные виды модуляции сигналов. Амплитудно-модулированные колебания: спектр АМ-колебания модулирующем сигнале различной сложности, ширина спектра; Балансная АМ-модуляция, однополосные АМ-колебания. ЧМ и ФМ колебания, их связь, девиация и индекс модуляции, спектр при малом и большом индексе модуляции, зависимость практической ширины спектра от частоты модулирующего сигнала.
 - 11.3. Детектирование амплитудно-модулированных колебаний. Квадратичное и линейное детектирование. Амплитудный детектор: механизм работы детектора (диаграммы тока, напряжения), выбор нагрузки. Детектирование частотно и фазово-модулированных колебаний.

Лабораторный практикум

Практическая часть курса построена в виде лабораторного практикума, позволяющего привить практические навыки работы с аналоговыми и цифровыми радиотехническими устройствами. Практикум включает следующие лабораторные работы:

№п/п	№ раздела дисциплины	Наименование лабораторных работ			
1.	2, 3,6	Реакция простых цепей на гармоническое и импульсное воздействия			
2	3,6	Исследование реакции колебательного контура на ступенчатое и гармоническое воздействия			
3	3,8,10	Амплитудный детектор			
4	8, 9	Однокаскадный усилитель на биполярном транзисторе с резистивной нагрузкой			
5	4, 9	RC-генератор низкочастотного гармонического колебания			

4. Образовательные технологии

Занятия по дисциплине проходят в лекционной форме и в форме лабораторных работ, а также в форме самостоятельной работы студентов.

Лекционный курс включает как классические, так и современные (проблемные, модульные, интерактивные) формы проведения занятий с разбором конкретных ситуаций. На лабораторных практикумах студенты самостоятельно работают с предложенными задачами. Разбирают как теоретически реакцию различных цепей на возможные воздействия, так и практически исследуют работу приборов и схем, применяя оборудование, размещенное в лаборатории. Самостоятельная работа студентов включает активное изучение лекционного материала вместе с соответствующими разделами учебных пособий, в том числе с использованием лабораторного оборудования и компьютеров.

5. Учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа студентов включает активное изучение лекционного материала вместе с соответствующими разделами учебных и учебно-методических пособий, в том числе с использованием систем компьютерной графики и электронных образовательных ресурсов. Одной из основных задач самостоятельной работы является подготовка к проведению допуска по лабораторным работам, обсуждения способов

достижения конечного результата, решения поставленной в работе задачи и подготовка отчета.

Оценочные средства для контроля текущей успеваемости включают в себя текущие отчеты по лабораторным работам, обсуждение полученных результатов с преподавателем, возможное повторное измерение отдельных величин, проведение компьютерного моделирования работы исследуемого устройства.

Промежуточная аттестация - экзамен в пятом семестре, включающий в себя теоретические вопросы, по темам, указанным в пункте «Содержание разделов дисциплины».

Вопросы для самоконтроля:

- 1. Излучение и распространение радиоволн. Радиотехнический канал связи.
- 2. Классификация радиотехнических сигналов. Помехи в радиоэлектронных устройствах.
- 3. Спектральное представление сигналов. Свойства преобразования Фурье.
- 4. Спектры единичного и периодического П-образного видео- и радио импульсов, единичной ступеньки, гармонического сигналов.
- 5. Энергетический спектр и спектр мощности.
- 6. Основные понятия теории электрических цепей. Линейные (в том числе параметрические) и нелинейные электрические цепи (ЭЦ). Алгебраический критерий устойчивости ЭЦ.
- 7. Многофазные цепи. Методы расчета симметричных и несимметричных трехфазных цепей.
- 8. Магнитные цепи. Индуктивно-связанные контуры. Трансформаторы.
- 9. Понятие электромагнитной индукции. Закон полного тока.
- 10. Роль ферромагнитных материалов в магнитной цепи.
- 11. Принцип суперпозиции в радиоэлектронике. Эквивалентные преобразования в пассивных ЭЦ.
- 12. Эквивалентные преобразования идеальных и линейных активных элементов ЭЦ.
- 13. Энергетические процессы в линейных двухполюсниках при гармоническом воздействии.
- 14. Согласование линейного источника энергии с нагрузкой.
- 15. Метод интеграла наложения (Дюамеля). Спектральный метод. Преобразование Лапласа и его использование для анализа ЭЦ.
- 16. Линейные четырехполюсники. Системы параметров линейных четырехполюсников.
- 17. Эквивалентные схемы линейных четырехполюсников. Составные четырехполюсники.
- 18. Частотные и переходные характеристики RC, CR, RL и LR цепей. Области применения.
- 19. Частотные и переходные характеристики последовательного и параллельного колебательных контуров. Понятие добротности и полосы пропускания. Области применения.
- 20. Пассивные электрические фильтры. Характеристические сопротивления линейных четырехполюсников.
- 21. Линии с распределенными параметрами. Телеграфное уравнение для токов и напряжений.
- 22. Режимы длинных линий. Коэффициент отражения, коэффициент стоячей волны.
- 23. Нелинейные идеализированные двухполюсники. Примеры, характеристики.
- 24. Биполярные транзисторы (БП). Схемы включения БП с общим эмиттером (ОЭ), общей базой (ОБ), общим коллектором (ОК).
- 25. Н –параметры биполярных транзисторов.
- 26. Полевые транзисторы (ПТ). ПТ с изолированным затвором.
- 27. Методы анализа ЭЦ с нелинейными двухполюсниками. (Графический, метод линеаризации, метод квадратичной и линейно-кусочной аппроксимации).
- 28. Усилители электрических сигналов. Структурная схема, классификация.
- 29. Линейный широкополосный усилительный каскад на биполярном транзисторе (БТ),

- включенном по схеме с общим эмиттером (ОЭ). Принципиальная схема, основные характеристики.
- 30. Выбор рабочей точки транзистора. Термостабилизация рабочей точки в линейном широкополосном усилительном каскаде на БТ.
- 31. Обратные связи (ОС) в усилителях. Влияние ОС на основные характеристики усилительного каскада. Критерий устойчивости Найквиста.
- 32. Составные транзисторы. Дифференциальный усилительный каскад.
- 33. Операционный усилитель (ОУ). Широкополосный инвертирующий усилитель на ОУ. Активный фильтр на ОУ.
- 34. Резонансные и нерезонансные усилители мощности. Использование режимов с отсечкой в усилителях мощности. Выбор рабочей точки, КПД.
- 35. Трансформаторный и бестрансформаторный двухтактный усилитель мощности.
- 36. Автоколебательные системы. Генераторы гармонических колебаний. RC-генератор. Генератор гармонических колебаний на туннельном диоде.
- 37. Виды модуляции радиотехничеких сигналов. Амплитудная модуляция.
- 38. Амплитудное детектирование. Простейшие схемы амплитудных детекторов.

Методическое обеспечение:

- 1. Реакция простых цепей на гармоническое и импульсное воздействия. Практикум. / Сост. К.А. Марков, С.В.Хазанова. Изд-во ННГУ, Н. Новгород, 2008. 24 с.
- 2. Исследование реакции колебательного контура на ступенчатое и гармоническое воздействия. Методическое руководство к лабораторной работе. / Сост. В.Н.Шабанов, С.В.Хазанова. Изд-во ННГУ, Н. Новгород, 2005. 14 с.
- 3. Марков К.А. Амплитудный детектор. Практикум / Изд-во ННГУ, Н. Новгород, $2008.-16~\mathrm{c}.$
- 4. Однокаскадный усилитель на биполярном транзисторе с резистивной нагрузкой. Практикум. / Сост. С.В. Шабанов, С.В.Хазанова. Изд-во ННГУ, Н. Новгород, 2008. 17 с.
- 5. Исследование амплитудно-частотных и фазо-частотных характеристик электрических *LC* фильтров низких и высоких частот. Методическая разработка к лабораторной работе. / Сост. В.Н.Шабанов. Изд-во ННГУ, Н. Новгород, 1992. 10 с.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)

6.1. Перечень компетенций выпускников образовательной программы, в формировании которых учувствует дисциплина, с указанием результатов обучения (знаний, умений, владений) приведён выше (раздел 2). Ниже приведена таблица образовательных дескрипторов (отличительных признаков уровней освоения компетенций).

Уровень сформирован	Шкала оценивания сформированности компетенций						
ности компетенций (индикатора	плохо	неудовлетво рительно	удовлетвори тельно	хорошо	очень хорошо	отлично	превосходно
достижения компетенций)	Не за	чтено	зачтено				
Знания	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту	Уровень знаний ниже минимальны х требований. Имели место грубые	Минимально допустимый уровень знаний. Допущено много негрубых	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено	Уровень знаний в объеме, соответствую щем программе подготовки. Допущено	Уровень знаний в объеме, соответству ющем программе подготовки, без	Уровень знаний в объеме, превышающе м программу

	знаний вследствие отказа обучающегос я от ответа	ошибки.	ошибки.	несколько негрубых ошибок	несколько несуществен ных ошибок	ошибок.	подготовки.
<u>Умения</u>	Отсутствие минимальны х умений . Невозможнос ть оценить наличие умений вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы основные умения. Имели место грубые ошибки.	Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания но не в полном объеме.	Продемонс трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания, в полном объеме, но некоторые с недочетами .	Продемонстр ированы все основные умения. Решены все основные задачи . Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонс трированы все основные умения, реш ены все основные задачи с отдельным и несуществе нным недочетами , выполнены все задания в полном объеме.	Продемонстр ированы все основные умения,. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
<u>Навыки</u>	Отсутствие владения материалом. Невозможнос ть оценить наличие навыков вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы базовые навыки. Имели место грубые ошибки.	Имеется минимальны й набор навыков для решения стандартных задач с некоторыми недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и недочетами	Продемонстр ированы базовые навыки при решении стандартных задач без ошибок и недочетов.	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов.	Продемонстр ирован творческий подход к решению нестандартн ых задач

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, карты компетенций, в формировании которых участвует дисциплина, приводятся в Приложении.

6.2. Описание шкал оценивания.

Промежуточная аттестация проводится в форме экзамена. Форма проведения — индивидуальное собеседование. При выставлении экзаменационной оценки учитываются результаты сдачи студентом промежуточных отчетов по лабораторным занятиям. Контроль текущей успеваемости включают в себя текущие отчеты по лабораторным работам, обсуждение полученных результатов с преподавателем.

Экзаменационная оценка выставляется по принятой в ННГУ семибальной шкале. Экзаменационные оценки «превосходно» и «отлично» – соответствуют оценке 5 (отлично) по пятибальной шкале, оценки «очень хорошо» и «хорошо» – соответствуют оценке 4

(хорошо), оценка «удовлетворительно» – соответствует оценке 3 (удовлетворительно), оценки «неудовлетворительно» и «плохо» – соответствует оценке 2 (неудовлетворительно).

6.3. Критерии оценивания результатов обучения для проведения аттестации обучающихся по дисциплине.

Для оценки результатов обучения, характеризующих сформированность компетенций, используются билеты, состоящие из 2-х вопросов, составленных на основе контрольных вопросов (п. 5) и задачи. При проведении экзамена учитываются результаты выполнения лабораторных работ.

превосходно	Отличная подготовка. Студент полностью выполнил
	практические задания, отвечает полностью на вопросы билета и
	дополнительные вопросы (задания), выходящие за рамки изученного
	объема курса и изученных алгоритмов и подходов, проявляя
	инициативу и творческое мышление.
отлично	Отличная подготовка. Студент полностью выполнил
	практические задания, отвечает полностью на вопросы билета,
	самостоятельно решает задачу в рамках изученных алгоритмов и
	подходов. При ответе на дополнительные вопросы (задания)
	допускаются незначительные неточности.
очень хорошо	Хорошая подготовка. Студент полностью выполнил
о тепь переше	практические задания, однако имеются отдельные замечания по
	представлению и интерпретации полученных результатов. Студент
	показывает хороший уровень знания вопросов билета,
	самостоятельно решает задачу и отвечает на вопросы (задания)
	преподавателя с небольшими неточностями.
хорошо	Хорошая подготовка. Студент полностью выполнил
породи	практический задания, однако имеются замечания по представлению
	и интерпретации полученных результатов. Студент показывает
	средний уровень знания вопросов билета, решает задачу с
	наводящими вопросами преподавателя и отвечает на некоторые
	дополнительные вопросы преподавателя (в рамках билета).
удовлетвори-	Удовлетворительная подготовка. Студент выполнил не менее
тельно	2/3 практических заданий, имеются замечания по представлению и
	интерпретации полученных результатов Студент показывает
	удовлетворительное знание вопросов билета и знание базовых
	понятий, может решить типовую задачу с помощью преподавателя.
неудовлетвори-	Студент выполнил менее 1/3 практический заданий,
тельно	показывает неудовлетворительное знание основ курса и базовых
	понятий. Необходима дополнительная подготовка для успешного
	прохождения испытания.
плохо	Студент не выполнил практические задания. Подготовка
	совершенно недостаточна. Последующая пересдача возможна только
	с комиссией.

6.4. Типовые контрольные задания и материалы заданий практических занятий, необходимые для оценки результатов обучения.

Типовые контрольные (экзаменационные) вопросы и задания

1. Общие представления о методах описания состояния (расчета) электрической цепи. Метод комплексных амплитуд.

- 2. RC-, RL- цепи как фильтры нижних и верхних частот. Переходные характеристики.
- 3. Амплитудно и фазо-частотные характеристики фильтров высоких и низких частот. Определение граничной частоты пропускания.
- 3. Определение постоянной времени зарядки конденсатора по виду временных переходных характеристик.
- 4. Входные и выходные вольт-амперные характеристики биполярного транзистора ввсхеме с общей базой и с общим эмиттером.
- 5. Определение h- параметров биполярного транзистора по виду вольт-амперных характеристик.
- 6. Расчет рабочей точки биполярного транзистора по постоянному току в усилительном каскаде в схеме с общим эмиттером.
 - 7. Обратная связь в усилителях. Типы обратной связи.
- 8. RC генератор с внешней обратной связью, схема. Генератор на туннельном диоде.
- 9. Режимы работы длинных линий. Волновое сопротивление длинной линии. Коффициент стоячей волны, определение.
- 10. Амплитудная модуляция, виды модуляции. Особенности, основные параметры, глубина модуляции.
 - 11. Схема простейшего амплитудного детектора.

7. Учебно-методическое и информационное обеспечение дисциплины «Теоретические основы электро- и радиотехники»

- 1. основная литература:
- 2. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 2000 448 с. (40 экз.)
- 3. Манаев В.И. Основы радиоэлектроники. М.: Радио и связь, 1990.-512c. (40 экз.)
- 4. Молчанов А.П., ЗанадворовП.Н. Курс электротехники и радиотехники : Главная редакция физико-математической лит-ры изд-ва «Наука», 1976 г., 480 с. (35 экз.)
- 5. Ушаков В. Н. Основы радиоэлектроники и радиотехнические устройства. М.: Высшая школа, 1976 г., 424 с. (35 экз.)
- 6. Харкевич А.А. Основы радиотехники [Электронный ресурс] : учеб. пособие Электрон. дан. Москва: Физматлит, 2007. 512 с. Режим доступа: https://e.lanbook.com/book/48189

б) дополнительная литература:

- 1. Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. М.: Высшая школа, 1984, -558 с. (30 экз.)
- 2. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986, 511 с. (25 экз.)
- 3. Титов А.А. Сборник задач по основам радиотехники [Электронный ресурс]: учеб.пособие Электрон. дан. Москва: ТУСУР, 2007. 88 с. Режим доступа: https://e.lanbook.com/book/10916.

8. Материально-техническое обеспечение дисциплины «Теоретические основы электро- и радиотехники»

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения: специализированной мебелью, меловыми или магнитно-маркерными досками для представления учебной информации большой аудитории.

Лабораторный практикум проводится в специализированной аудитории, оснащенной измерительным оборудованием, средствами вычислительной техники, источниками питания и макетами лабораторных устройств.

Программное обеспечение, управляющее лабораторными макетами, осуществляется в среде программирования LabView.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями установленного ННГУ образовательного стандарта высшего образования по направлению подготовки 28.03.01 "Нанотехнологии и микросистемная техника".

Автор:

доцент кафедры физики полупроводников, электроники и наноэлектроники, к.ф.-м.н., Хазанова С.В.

Рецензент:

заведующий кафедрой теоретической физики, д.ф.-м.н.

В.А. Бурдов

Заведующий кафедрой физики полупроводников, электроники и наноэлектроники, д.ф.-м.н., профессор

Д. А. Павлов

Программа одобрена на заседании Учебно-методической комиссии физического факультета ННГУ, протокол б/н от «14» декабря 2021 г.

Председатель Учебно-методической комиссии физического факультета ННГУ А. А. Перов