МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

TT	1		U		
Институ	T HUMON	манионных	технопогии	математики	и механики
rinciri y	1 milwop	мационныл	TOAITOMOT HIT,	Maichairm	ri wichanirikri

(факультет / институт / филиал)

УТВЕРЖДЕНО решением Ученого совета ННГУ протокол от «30» ноября 2022 г. № 13

Рабочая программа дисциплины

Физика

(наименование дисциплины (модуля))

Уровень высшего образования

бакалавриат

(бакалавриат / магистратура / специалитет)

Направление подготовки / специальность

090304 Программная инженерия

Профиль подготовки

Разработка программно-информационных систем

Форма обучения

очная

(очная / очно-заочная / заочная)

Нижний Новгород

2023 год

1. Место дисциплины в структуре ОПОП Дисциплина относится к обязательной части.

№ вари	Место дисциплины в учебном плане образовательной	Стандартный текст для автоматического заполнения в конструкторе РПД
анта	программы	
1	Блок 1. Дисциплины (модули)	Дисциплина Б1.О.21 Физика относится к
	Обязательная часть	обязательной части ООП направления подготовки
		09.03.04. Программная инженерия.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

_		таты обучения по дисциплине вии с индикатором достижения	Наименование
Формируемые компетенции (код, содержание компетенции)	Индикатор достижения компетенции (код, содержание индикатора)	Результаты обучения по дисциплине	оценочного средства
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ОПК-1.1. Знает основы математики, физики, вычислительной техники и программирования ОПК-1.2. Умеет решать стандартные профессиональные задачи с применением	Знать понятия, основные законы, описывающие физические явления, а также следствия, вытекающие из этих законов и принципов, имеющие теоретическое и прикладное значение; математические методы, используемые для постановки и решения классических задач физики Уметь Применять понятия, основные законы, описывающие физические явления, и методы математического анализа для решения физических	Тест Собеседование Тест Контрольная работа
	естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования. ОПК-1.3. Имеет навыки теоретического и экспериментального исследования объектов профессиональной деятельности.	задач различного уровня сложности. Владеть Навыками составления математических моделей, описывающих физические явления, и методами их решения и анализа.	Тест Контрольная работа

3. Структура и содержание дисциплины

3.1. Трудоемкость дисциплины

	очная форма обучения
Общая трудоемкость	3 3ET
Часов по учебному плану	108
в том числе	
контактная работа:	50
- занятия лекционного типа	32
- занятия семинарского типа	16
- текущий контроль (КСР)	2
самостоятельная работа	22
Промежуточная аттестация –экзамен	36
В том числе:	•

3.2. Содержание дисциплины

Наименование и краткое содержание разделов и тем дисциплины,					Всего часы)			В ТОМ	числе
рорма промежуточной аттестации по дисциплине									
			ктная	pa	бота (р	работа в	30		Самостоятельная
		взаим	одейс	тв	ии с пр	еподав	ателем	1),	
		часы							работа студента
		из них	ζ.						часы
						T			CPC
		HOL	СКО		ндо		HEIX		CFC
		HOH	 Нар	па	рат		akti	•	
		занятия іекционног типа	семинарско	о типа	Лабораторн ые	Всего	KOHTAKTHЫX		
Электростатическое поле в вакууме:		/ <u>F</u> C	<u> </u>	ľ.	<u>[</u>		Ī	<u> </u>	
Заряды, силы поля. Электрический									
заряд. Закон Кулона. Электрическое									
поле. Напряженность поля Е.									
Теорема Остроградского – Гаусса.									
Понятие о потоке. Интегральная									
форма теоремы. Дифференциальная									
форма теоремы. Примеры									
применения теоремы. Работа,	10								
энергия, потенциал. Работа	13	6	3				9		4
кулоновских сил. Теорема о									
циркуляции вектора Е. Энергия и									
потенциал электростатического									
поля. Связь между напряженностью									
электростатического поля и его									
потенциалом. Системы зарядов и									
электрические поля. Электрический									
диполь. Поле системы зарядов на									
больших расстояниях.									

	1	1	1	1		
тока. Закон Био - Савара – Лапласа.						
Основные законы магнитного поля:						
Теорема Гаусса для поля В. Теорема						
о циркуляции вектора В.						
Применение теоремы о циркуляции						
вектора В. Дифференциальная						
форма законов. Сила Ампера. Закон						
Ампера. Сила взаимодействия						
параллельных токов. Сила,						
действующая на контур с током.						
Работа по перемещению проводника						
и контура с током в магнитном поле.						
Магнитное поле в веществе:						
Намагничение вещества.						
Намагниченность Ј. Циркуляция						
вектора Ј.Вектор Н. Граничные						
условия для векторов В и Н. Поле в						
однородном магнетике. Типы						
магнетиков. Ферромагнетизм.						
Электромагнитная индукция:						
Явление электромагнитной	10	4	2		6	4
индукции и сила Лоренца.	10	4	2		O	4
Электродвижущая сила индукции.						
Явление индукции в неподвижном						
проводнике. Закон индукции						
Фарадея и правило Ленца.						
Электромагнитная индукция и закон						
сохранения энергии. Частные случаи						
индукции. Индукционные токи в						
сплошных проводниках. Явление						
самоиндукции. Взаимная индукция.						
Энергия электромагнитного поля.						
Цепи переменного тока:						
Стационарные цепи переменного						
тока. Элементарные сведения о						
комплексных числах. Основы	10	4	2		6	4
символического метода расчета	10				J	7
электрических цепей.						
Нестационарные состояния						
(переходные процессы) в цепях						
переменного тока.						
Уравнения Максвелла:						
Ток смещения. Система уравнений	16	8	4		12	4
Максвелла. Энергия поля и ее поток.						
Вектор Умова-Пойнтинга.						

Текущий контроль (КСР)	2				2	
Промежуточная аттестация: Экзамен.	36					
Итого	108	32	16		50	22

Практические занятия (семинарские занятия) организуются, в том числе в форме практической подготовки, которая предусматривает участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

Практическая подготовка предусматривает: разработку математических и информационных моделей

На проведение практических занятий (семинарских занятий) в форме практической подготовки отводится 6 часов.

Практическая подготовка направлена на формирование и развитие:

практических навыков в соответствии с профилем ОП:

- Формирование требований к информатизации и автоматизации прикладных процессов, формализация предметной области проекта
- компетенций ОПК-1

Текущий контроль успеваемости реализуется в формах опросов на занятиях семинарского типа.

Промежуточная аттестация проходит в традиционных формах (экзамен).

4. Учебно-методическое обеспечение самостоятельной работы обучающихся Виды самостоятельной работы студентов

Самостоятельная работа студента при изучении модуля «Физика» включает выполнение домашних заданий, подготовку к тестированию, зачету и экзамену.

Для обеспечения самостоятельной работы обучающихся используется электронный курс (Физика. Термодинамика ДО, https://e-learning.unn.ru/course/view.php?id=786, Физика. Электродинамика ДО, https://e-learning.unn.ru/course/view.php?id=242), созданный в системе электронного обучения ННГУ - https://e-learning.unn.ru/

Самостоятельная работа заключается в ознакомлении с теоретическим материалом по учебникам, указанным в списке литературы, решении практических задач, подготовке ответов на вопросы самоконтроля. Самостоятельная работа может происходить как в читальном зале библиотеки, так и в домашних условиях.

Самостоятельная работа под контролем преподавателя направлена на активизацию познавательной деятельности студента и установление «обратной связи» между студентом и преподавателем.

Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведены в п. 5.2.

5. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю), включающий:

5.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень сформирован	Шкала оценивания сформированности компетенций										
ности компетенций (индикатора	плохо	неудовлетво рительно	удовлетвори тельно	хорошо	очень хорошо	онрицто	превосходно				
достижения компетенций)	Не за	чтено		Зачтено							
Знания	Отсутствие знаний теоретическо го материала. Невозможнос ть оценить полноту знаний вследствие отказа обучающегос я от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующ ем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответствую щем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающе м программу подготовки.				
<u>Умения</u>	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстр ированы основные умения. Имели место грубые ошибки.	Продемонстр ированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме.	Продемонстри рованы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстри рованы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме, но некоторые с недочетами.	Продемонстр ированы все основные умения, решены все основные задачи с отдельными несущественным недочетами, выполнены все задания в полном объеме.	Продемонстр ированы все основные умения, решены все основные задачи. Выполнены все задания, в полном объеме без недочетов				
<u>Навыки</u>	Отсутствие владения материалом. Невозможнос ть оценить наличие навыков вследствие отказа обучающегос я от ответа	При решении стандартных задач не продемонстр ированы базовые навыки. Имели место грубые ошибки.	Имеется минимальны й набор навыков для решения стандартных задач с некоторыми недочетами.	Продемонст- рированы базовые навыки при решении стандартных задач с некоторыми недочетами	Продемонстри рованы базовые навыки при решении стандартных задач без ошибок и недочетов.	Продемонстр ированы навыки при решении нестандартных задач без ошибок и недочетов.	Продемонстр ирован творческий подход к решению нестандартн ых задач.				

Шкала оценки при промежуточной аттестации

Оц	енка	Уровень подготовки
	Превосходно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно»
	Отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично», при этом хотя бы одна компетенция сформирована на уровне «отлично»
зачтено	Очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо», при этом хотя бы одна компетенция сформирована на уровне «очень хорошо»
	Хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо», при этом хотя бы одна компетенция сформирована на уровне «хорошо»
	Удовлетворительно	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»
не зачтено	Неудовлетворительно	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно», ни одна из компетенций не сформирована на уровне «плохо»
	Плохо	Хотя бы одна компетенция сформирована на уровне «плохо»

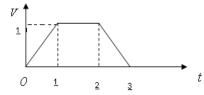
5.2. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения

5.2.1 Контрольные вопросы Контрольные вопросы к экзамену

Контрольные вопросы к экзамену

Вопрос	Код компетенции (согласно РПД)
1. Электрический заряд. Закон Кулона.	ОПК-1
2. Постоянный ток. Уравнение непрерывности.	ОПК-1
3. Электродвижущая сила индукции.	ОПК-1
4. Поле внутри и снаружи проводника.	ОПК-1
5. Интегральная форма основных законов магнитного поля.	ОПК-1
6. Электрическое поле. Напряженность поля Е.	ОПК-1
7. Закон Ома для неоднородного участка цепи	ОПК-1
8. Явление индукции в неподвижном проводнике.	ОПК-1
Индукционные токи в сплошных проводниках.	

9. Замкнутая проводящая оболочка.	ОПК-1
10. Дифференциальная форма основных законов магнитного поля.	ОПК-1
11. Теорема Остроградского-Гаусса для поля E (интегральная форма).	ОПК-1
12. Закон Ома для однородного проводника. Удельное сопротивление.	ОПК-1
13. Закон индукции Фарадея и правило Ленца.	ОПК-1
14. Общая задача электростатики. Метод изображений.	ОПК-1
15. Примеры применения теоремы о циркуляции вектора В.	ОПК-1
16. Теорема Остроградского-Гаусса для поля E (дифференциальная форма).	ОПК-1
17. Дифференциальная форма закона Ома.	ОПК-1
18. Электромагнитная индукция и закон сохранения энергии.	ОПК-1
19. Электроемкость. Емкость уединенного проводника.	ОПК-1
20. Сила Ампера. Закон Ампера.	ОПК-1
21. Примеры применения теоремы Остроградского-Гаусса для поля E .	ОПК-1
22. Стороннее поле. Электродвижущая сила и напряжение.	ОПК-1
23. Частные случаи индукции. Явление самоиндукции.	ОПК-1
24. Электроемкость. Емкость системы проводников.	ОПК-1
25. Сила взаимодействия параллельных токов.	ОПК-1
26. Работа кулоновских сил. Теорема о циркуляции вектора Е.	ОПК-1
27. Закон Ома для замкнутой цепи.	ОПК-1
28. Частные случаи индукции. Взаимная индукция.	ОПК-1
29. Условия на границе двух диэлектриков.	ОПК-1
30. Примеры применения теоремы о циркуляции вектора В.	ОПК-1
31. Плоские конденсаторы и их соединения.	ОПК-1
32. Работа по перемещению контура с током в магнитном поле.	ОПК-1
33. Энергия и потенциал электростатического поля.	ОПК-1
34. Разветвленные цепи. Правила Кирхгофа.	ОПК-1
35. Энергия электромагнитного поля. Вектор Умова-	ОПК-1


Пойнтинга			
36. Электрическое поле в диэлектрике.	ОПК-1		
37. Магнитное поле в веществе. Намагниченность J	ОПК-1		
38. Связь между напряженностью электростатического поля и его потенциалом	ОПК-1		
39. Электроемкость. Цилиндрические и сферические	ОПК-1		
конденсаторы 40. Токи намагничивания в однородных и неоднородных магнетиках	ОПК-1		
41. Электрический диполь: поле и его потенциал	ОПК-1		
42. Электрический диполь: сила, действующая на диполь, и ее момент, энергия диполя во внешнем поле	ОПК-1		
43. Теорема о циркуляции вектора J	ОПК-1		
44. Поле системы зарядов на больших расстояниях	ОПК-1		
45. Энергия заряженных проводников и конденсаторов	ОПК-1		
46. Ток смещения	ОПК-1		
47. Векторы B , J , H . Их взаимная связь и роль в описании магнитных полей	ОПК-1		
48. Поле в диэлектрике. Поляризованность Р	ОПК-1		
49. Сила, действующая на заряд, движущийся в магнитном поле	ОПК-1		
50. Система интегральных уравнений Максвелла	ОПК-1		
51. Энергия системы зарядов	ОПК-1		
52. Граничные условия для векторов В и Н	ОПК-1		
53. Поляризованность Р и связанные заряды	ОПК-1		
54. Магнитное поле равномерно движущегося заряда	ОПК-1		
55. Система дифференциальных уравнений Максвелла	ОПК-1		
56. Электрическая энергия системы двух и более тел	ОПК-1		
57. Поле в однородном магнетике	ОПК-1		
58. Вектор электрического смещения, теорема Остроградского - Гаусса	ОПК-1		
59. Контур с током в магнитном поле. Вращательный момент	ОПК-1		
60. Явление электромагнитной индукции и сила Лоренца	ОПК-1		
61. Условие на границе проводник-диэлектрик. Связанные и свободные заряды	ОПК-1		

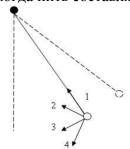
62. Магнитное поле тока. Закон Био-Савара-Лапласа	ОПК-1
63. Условия на границе двух диэлектриков	ОПК-1
64. Закон Джоуля - Ленца	ОПК-1
65. Энергия магнитного поля	ОПК-1
66. Работа и мощность тока. Удельная мощность тока	ОПК-1
67. Квазистационарные поля и токи. Переходные процессы в цепи с конденсатором	ОПК-1

5.2.2. Типовые тестовые задания для оценки сформированности компетенции ОПК-1

1. <u>Тип – одиночный выбор.</u>

Тело, имеющее массу 10 кг, поднимается на нити вертикально. График изменения его скорости указан на рисунке. Найти натяжение нити на интервалах 0-1, 1-2, 2-3 (время в секундах).

- 108 H; 98 H; 108 H
- 108 H; 98 H; 88 H
- 88 H; 98 H; 108 H

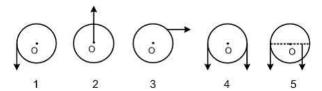

2. Тип – одиночный выбор.

В кабине лифта тело взвешивают на пружинных весах. При равномерном движении весы показывают 50 кг, а при ускоренном – 52 кг. Поднимается лифт или опускается и чему равно его ускорение?

- $0,53 \text{ m/c}^2$
- $0,784 \text{ m/c}^2$
- 0.392 m/c^2

3. Тип – одиночный выбор.

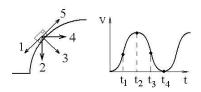
Математический маятник колеблется с амплитудой 45° . Куда направлено ускорение шарика, когда нить составляет с вертикалью угол 30° ?



- 1
- 2
- 3

• 4

4. Тип – одиночный выбор.


На рисунке к диску, который может свободно вращаться вокруг оси, проходящей через точку О, прикладывают одинаковые по величине силы. Момент сил будет максимальным в положении...

- 4
- 5
- 1

5. Тип – одиночный выбор.

Скорость автомобиля изменялась во времени, как показано на графике зависимости V(t). В момент времени t_1 автомобиль поднимался по участку дуги. Направление результирующей всех сил, действующих на автомобиль в этот момент времени правильно отображает вектор ...

- •
- 2
- 3
- 4

1. Тип – одиночный выбор.

Закон сохранения заряда выполняется в ...

- любой системе
- консервативной системе
- в электрически изолированной системе

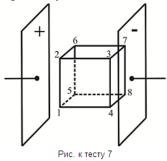
2. Тип – одиночный выбор.

Какая из формулировок теоремы Гаусса содержит ошибку?

$$\oint \mathbf{E} \cdot d\mathbf{s} = \frac{1}{\varepsilon_0} \int \rho d\mathbf{V}$$

$$\oint E_n \cdot ds = \frac{1}{\mathcal{E}_0} q_{\text{внутр}}$$

$$\oint E \cdot ds = \frac{1}{\varepsilon_0} q_{\text{внутр}}$$


3. Тип – одиночный выбор.

Эквипотенциальные поверхности могут пересекаться? Касаться?

- могут пересекаться
- могут касаться
- не могут ни пересекаться, ни касаться

4. <u>Тип – одиночный выбор.</u>

В электрическом поле плоского конденсатора находится куб небольшого размера. Укажите грани куба, являющиеся эквипотенциальными (см. рис.)

- все грани
- только 1-5-8-4; 2-3-7-8
- только 1-2-6-5; 4-3-7-8
- только 1-2-3-4; 5-6-7-8

5. Тип – одиночный выбор.

Вблизи поверхности проводника...

- $E_n = 0, E_{\tau} \neq 0$
- $E_{\tau} = 0, E_{n} \neq 0$
- $E_{\tau} \neq 0, E_{n} \neq 0$

5.2.3. Типовые задачи для оценки сформированности компетенции ОПК-1

Вариант 1

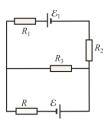
Задача 1.

Точка M движется по окружности согласно уравнениям

$$r = 2b \cos(kt/2), \ \varphi = kt/2$$

 $(r, \varphi$ — полярные координаты). Найти проекции скорости точки M на оси полярной системы координат, уравнения движения точки M_1 , описывающей годограф скорости, и проекции скорости точки M_1 .

Задача 2.


Гвоздь вбивается в стену, оказывающую сопротивление 700 Н. При каждом ударе молотка гвоздь углубляется в стену на длину l=0.15 см. Определить массу молотка, если при ударе о шляпку гвоздя он имеет скорость v=1.25м/с.

5.2.4. Пример задач, выносимых на экзамен для оценки сформированности компетенции ОПК-1

Задачи выбираются случайным образом.

Задача №1

Получить зависимость тока через сопротивление R от параметров, указанных на схеме. Внутренние сопротивления источников пренебрежимо малы

6. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
 - 1. Грезина А.В., Никифорова И.В., Панасенко А.Г. Физика. Электронно-управляемый курс (система электронного обучения ННГУ). https://e-learning.unn.ru/course/view.php?id=827
 - 2. Иродов И. Е. Электромагнетизм. Основные законы. 9-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2014. 319 с. (40 экз.)
 - 3. Савельев И. В. Курс общей физики. Т. 3., 1987. 317 с. (74 экз)
 - 4. Комаров В.Н., Грезина А.В., Панасенко А.Г., Никифорова И.В. "ОСНОВНЫЕ ЗАКОНЫ ТЕРМОДИНАМИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ В ЗАДАЧАХ И ПРИМЕРАХ". Учебно-методическое пособие. Фонд электронных образовательных ресурсов. Р.№. 646.13.08 http://www.unn.ru/books/resources.html
- б) дополнительная литература:
 - 1. Бордовский, Г. А. Общая физика в 2 т. Том 1 : учебное пособие для академического бакалавриата / Г. А. Бордовский, Э. В. Бурсиан. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2017. 242 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-534-05451-4. Режим доступа : www.biblio-online.ru/book/E018BF05-1609-4A2A-93C4-959CE18CE185.
 - 2. Бордовский, Г. А. Общая физика в 2 т. Том 2 : учебное пособие для академического бакалавриата / Г. А. Бордовский, Э. В. Бурсиан. 2-е изд., испр. и доп. М. : Издательство Юрайт, 2017. 299 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-534-05452-1. Режим доступа : www.biblio-online.ru/book/E7C051DE-ABA1-4C0B-8E84-C910D870F723.
 - 3. КОМАРОВ В.Н., ГРЕЗИНА А.В. "ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ В ЗАДАЧАХ И ПРИМЕРАХ". Учебно-методическое пособие. Фонд электронных образовательных ресурсов. Р.№. 648.13.08. http://www.unn.ru/books/resources.html

в) программное обеспечение и Интернет-ресурсы

- 1. Савельев И.В. Курс общей физики. Том 2. Электричество. М.: Наука, 1970. 442 с. (доступно в ЭБС «EqWorld», режим доступа: http://eqworld.ipmnet.ru/ru/library/physics/lectures.htm)
- 2. Иродов, И. Е. Задачи по общей физике [Электронный ресурс]: учебное пособие для вузов. 14-е изд. (эл.). М.: БИНОМ. Лаборатория знаний, 2016. 416 с. (доступно в ЭБС «Лань», режим доступа: https://e.lanbook.com/book/99230#book_name).

7. Материально-техническое обеспечение дисциплины

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа сост «Программная и		тветст	вии с требо	ованиями (ОС ННГУ	по направлен	ию 09.03.04	
Автор (ы)			I	Грезина А.1	В.			
			Панас	сенко А.Г.				
			Панкр	оатова Е.В.				
Рецензент (ы)								
Заведующий кафедрой прикладной математики						Иванченко М.В.		
Программа с информационнот 30 ноября 2	ных технол	огий,	математи			омиссии	института	