МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_ «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

	Радиофизический факультет
	УТВЕРЖДЕ
	решением президиума Ученого совета НН
	протокол № 1 от 16.01.202
	Рабочая программа дисциплины
	Схемотехника аналоговых электронных устройств
	Уровень высшего образования
	Специалитет
	Направление подготовки / специальность
11	1.05.02 - Специальные радиотехнические системы
	Направленность образовательной программы
Прием, анали	из и обработка сигналов системами специального назначения
	Форма обучения
	очная

г. Нижний Новгород

2024 год начала подготовки

1. Место дисциплины в структуре ОПОП

Дисциплина Б1.О.28 Схемотехника аналоговых электронных устройств относится к обязательной части образовательной программы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции	Планируемые результат (модулю), в соответ	ы обучения по дисциплине гствии с индикатором	Наименование оценочного средства		
(код, содержание компетенции) ОПК-7: Способен	достижения компетенци Индикатор достижения компетенции (код, содержание индикатора) ОПК-7.1: Понимает	и Результаты обучения по дисциплине ОПК-7.1:	Для текущего контроля успеваемости	Для промежуточной аттестации	
применять методы анализа и расчета характеристик радиотехнических цепей, аналоговых и цифровых узлов современной электроники	основные методы анализа и расчета характеристик радиотехнических цепей, аналоговых и цифровых узлов ОПК-7.2: Использует основные методы анализа и расчета характеристик радиотехнических цепей, аналоговых и цифровых узлов	находить способы применения современной элементной базы в устройствах аналоговой обработки сигналов ОПК-7.2: применять математическое моделирование функциональных радиотехнических узлов с целью оптимизации их параметров и последующей реализации в конкретных технических разработках	Допуск к лабораторной работе Отчет по лабораторным работам	Зачёт: Контрольные вопросы	

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	ран
Общая трудоемкость, з.е.	3
Часов по учебному плану	108
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	32
- занятия семинарского типа (практические занятия / лабораторные работы)	32
- KCP	1
самостоятельная работа	43
Промежуточная аттестация	0
	Зачёт

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Всего Наименование разделов и тем дисциплины в том числе (часы) Контактная работа (работа во взаимодействии с преподавателем), часы из них Самостоятельная Занятия работа семинарского обучающегося, Занятия типа часы лекционного (практические Всего занятия/лабора типа торные работы), часы о ф о о ф о ф о о ф о 4 2 2 2 Тема 1. Вводная часть. Тема 2. Базовые схемы включения транзисторов. 9 6 6 3 21 36 5 16 15 Тема 3. Усилители переменного тока. 8 5 3 Тема 4. Усилители постоянного тока (УПТ). 5 Тема 5. Интегральные дифференциальные усилители. 6 4 4 2 Тема 6. Операционные усилители и их применение. 35 4 16 20 15 Тема 7. Инструментальные микросхемы. 9 6 6 3 0 Аттестация KCP 1 1 Итого 108 32 32 65 43

Содержание разделов и тем дисциплины

Тема 1. Вводная часть.

Способы аналитического описания основные характеристики линейных четырёхполюсников. Вопросы межкаскадного согласования.

Тема 2. Базовые схемы включения транзисторов.

Базовые схемы включения биполярных и полевых транзисторов. Выбор начальной рабочей точки. Эквивалентные схемы по постоянному и переменному току.

Тема 3. Усилители переменного тока.

Апериодический и резонансный усилители. Амплитудно- и фазочастотные характеристики усилителей.

Тема 4. Усилители постоянного тока (УПТ).

Дрейфовые явления и способы повышения стабильности работы УПТ. Однотактный и дифференциальный каскады УПТ.

Тема 5. Интегральные дифференциальные усилители.

Обобщённая принципиальная схема интегрального дифференциального усилителя. Стандартный операционный усилитель (ОУ) и его характеристики.

Тема 6. Операционные усилители и их применение.

Инвертирующее и неинвертирующее включение ОУ. Безынерционные и инерционные (фильтры) цепи на основе ОУ.

Тема 7. Инструментальные микросхемы.

Компараторы, цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразователи. Аналоговые перемножители в линейном и нелинейном режимах. Смесители и устройства на их основе – синхронный и фазовый детекторы, преобразователи частоты, модуляторы.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает в себя подготовку к контрольным вопросам и заданиям для текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведенным в п. 5.

- 1. Самостоятельная работа обучающихся состоит в изучении рекомендованной литературы по заданным на лекционных занятиях темам, изучении методических рекомендаций к лабораторным работам, написанию отчётов по лабораторным работам.
- 2. ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ. Авторы-составители: Д.Н. Ивлев, Д.В. Савельев: Практикум. Нижний Новгород: Нижегородский госуниверситет, 2023. 27 с.
- 3. МУЛЬТИВИБРАТОР. Авторы: Д.Н. Ивлев, В.В. Пархачёв: Практикум. Нижний Новгород: Нижегородский госуниверситет, 2023. 16 с.
- 5. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю)
- 5.1 Типовые задания, необходимые для оценки результатов обучения при проведении текущего контроля успеваемости с указанием критериев их оценивания:
- 5.1.1 Типовые задания (оценочное средство Допуск к лабораторной работе) для оценки сформированности компетенции ОПК-7:
 - 1. Что такое мультивибратор, релаксационный генератор?
 - 2. Какие бывают варианты схемы мультивибратора и в чём их особенности?
 - 3. Что такое биполярный n-p-n транзистор?
 - 4. Изобразите принципиальную схему мультивибратора на транзисторах и объясните принцип её работы с использованием рис. 2.
 - 5. Когда мультивибратор называется симметричным и каковы особенности генерируемого им сигнала?
 - 6. Для чего в лабораторной установке используется переменное сопротивление R5 и на какие параметры генерируемого сигнала будет влиять его значение ?
 - 7. На какие параметры генерируемого мультивибратором сигнала, снимаемого с коллектора транзистора VT2, будут влиять значения резисторов R1 и R2 (рис. 4)?
 - 8. На какие параметры генерируемого мультивибратором сигнала, снимаемого с коллектора транзистора VT2, будут влиять значения резисторов R3 и R4 (рис. 4)?
 - 9. На какие параметры генерируемого мультивибратором сигнала, снимаемого с коллектора транзистора VT2, будет влиять значение ёмкости C2 (рис. 4) ?
 - 10. Что такое операционный усилитель? Перечислите основные отличительные свойства ОУ?

- 11.Из каких узлов (подсхем) состоит типичный операционный усилитель?
- 12. Цепи с какими функциями можно построить на базе операционных усилителей?
- 13. Что такое инвертирующее включение ОУ ? Почему оно называется инвертирующим ?
- 14. Что такое повторитель напряжения и как выглядит схема повторителя напряжения на ОУ?
- 15.В чём преимущество использования ОУ при построении полосовых фильтров?
- 16. Что такое неинвертирующий сумматор на ОУ?
- 17. Напишите выражение для AЧX дифференцирующей цепи на идеальном ОУ, изобразите качественно AЧX в виде графика.
- 18. Напишите выражение для АЧХ интегрирующей цепи на идеальном ОУ, изобразите качественно АЧХ в виде графика.
- 19. На какой частоте, выраженной в герцах, должен наблюдаться максимум амплитудно-частотной характеристики полосового RC-фильтра, схема которого приведена на рис. 17?
- 20. Напишите выражение для AЧX активного полосового RC-фильтра на идеальном ОУ, схема которого показана на рис. 17. Изобразите качественно AЧX в виде графика.

Критерии оценивания (оценочное средство - Допуск к лабораторной работе)

Оценка	Критерии оценивания
зачтено	Даны правильные ответы на несколько заданных при собеседовании контрольных вопросов из методических указаний к лабораторным работам
не зачтено	Нет правильного ответа хотя бы на один из заданных при собеседовании контрольных вопросов из методических указаний к лабораторным работам

5.1.2 Типовые задания (оценочное средство - Отчет по лабораторным работам) для оценки сформированности компетенции ОПК-7:

- 1. Расчёт параметров генерируемого сигнала: воспользовавшись схемой мультивибратора, описанием макета и формулами из раздела «Основные параметры колебаний», рассчитать $T_{\rm u}$, $T_{\rm п}$, $T_{\rm ф}$, F для исследуемых вариантов параметров схемы согласно таблице 1 при условии, что выходное напряжение снимается с коллектора транзистора VT2. При выполнении расчетов значение подаваемого на резисторы R3 и R4 напряжения полагать $E_{34}=15$ В (если в таблице не указано иначе). Результаты расчетов занести в таблицу 1.
- 2. Измерение и анализ параметров генерируемого сигнала: устанавливая последовательно значения параметров элементов схемы согласно таблице 1, измерить с помощью осциллографа и записать в таблицу значения длительности импульса $T_{\rm u}$, длительности паузы $T_{\rm n}$, времени нарастания фронта импульса $T_{\rm p}$, частоты импульсов F для сигнала на коллекторе транзистора VT2; сделать вывод о влиянии величин R1, R2, R3, R4, C1, C2 и $E_{\rm 34}$ на параметры импульсов.
- 3. Изучение влияния напряжения E_{34} на форму и параметры импульсов:
 - установить следующие значения параметров элементов схемы: R1 = R2 = 2 кОм, R3 = R4 = 60 кОм, C1 = 10 нФ, C2 = 20 нФ;
 - плавно изменяя значение сопротивления резистора R_5 и наблюдая осциллограммы импульсов на коллекторе транзистора VT_2 , выяснить, как влияет значение напряжения E_{34} на форму и параметры импульсов;

- сохранить (записать на флэш-накопитель[1], сфотографировать или зарисовать) осциллограммы для двух крайних положений резистора R₅);
- сделать вывод о влиянии напряжения смещения на параметры импульсов.

4. Изучение осциллограмм сигналов:

- установить значения параметров элементов схемы как в предыдущем задании: R1 = R2 = 2 кОм, R3 = R4 = 60 кОм, C1 = 10 нФ, C2 = 20 нФ;
- установить значение напряжения $E_{34} = 5$ В (ручка потенциометра в крайнем левом положении);
- получить на экране осциллографа осциллограммы сигналов одновременно с коллектора транзистора VT1 (гнездо KT1) и базы транзистора VT2 (гнездо KT4), разнеся их в вертикальном положении на экране так, чтобы они не перекрывались друг с другом;
- измерить (предпочтительно с помощью горизонтальных курсоров осциллографа) и записать максимальное и минимальное значения напряжения (V_{min} и V_{max}) на полученных осциллограммах;
- сохранить полученные осциллограммы;
- аналогично получить и сохранить осциллограммы сигналов с баз транзисторов VT1 и VT2 (гнёзда KT3, KT4), разнеся их в вертикальном положении на экране;
- изменив значение ёмкости конденсатора С1 (С1 = 20 нФ) получить и сохранить осциллограмму дифференциального выходного сигнала мультивибратора (разность сигналов с коллекторов транзисторов), подключив разъёмы одного из измерительных кабелей к гнёздам КТ1 и КТ2;
- измерить и записать максимальное и минимальное значения напряжения (V_{min} и V_{max}) на осциллограмме дифференциального сигнала.
- 5. Исследование неинвертирующего усилителя. Соберите схему для исследования, приведённую на рисунке 12 с начальными значениями R1=R2=5 кОм. Входное напряжение $U_{\rm BX}$ на схему подать с любого из трёх генераторов напряжений, расположенных в левом верхнем углу на той же панели, что и схема с ОУ. Это напряжение подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы усилителя.

Порядок выполнения задания:

- с помощью осциллографа измерить и записать амплитуду и частоту подаваемого на вход схемы напряжения;
- произвести измерения амплитуды выходного напряжения схемы, меняя значения резисторов R1 и R2 в соответствии с таблицей из протокола измерений;
- наблюдая осциллограммы, сравнить фазы входного и выходного сигналов, сохранить (записать на флэш-накопитель[1], сфотографировать или зарисовать) осциллограммы входного и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;
- вычислить теоретические ($K_{yc \text{ Teop}}$) и экспериментальные ($K_{yc \text{ экспер}}$) значения коэффициента усиления неинвертирующего усилителя в приведённой таблице;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.
- 6. Исследование инвертирующего усилителя. Собрать схему для исследования, приведённую на рисунке 13, с начальными значениями R1 = R2 = 5 кОм. Входное напряжение Uвх на схему подать с любого из трёх генераторов напряжений, расположенных в левом верхнем углу на той же панели, что и схема с ОУ. Это напряжение подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы усилителя.

Порядок выполнения задания:

• с помощью осциллографа измерить и записать амплитуду и частоту подаваемого на вход схемы напряжения;

- произвести измерения амплитуды выходного напряжения схемы, меняя значения резисторов R1 и R2, в соответствии с таблицей из протокола измерений;
- наблюдая осциллограммы, сравнить фазы входного и выходного сигналов, сохранить (записать на флэш-накопитель, сфотографировать или зарисовать) осциллограммы входного и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;
- вычислить теоретические ($K_{yc \text{ теор}}$) и экспериментальные ($K_{yc \text{ экспер}}$) значения коэффициента усиления инвертирующего усилителя в приведённой таблице;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.
- 7. Исследование неинвертирующего сумматора напряжений. Подать на первый вход осциллографа синусоидальное колебание с выхода генератора напряжения, расположенного в левом верхнем углу на той же панели, что и схема с ОУ (рис. 9), а на второй вход осциллографа прямоугольное колебание. Сохранить осциллограммы данных сигналов с экрана осциллографа (при сохранении должны быть видны амплитуды этих сигналов). Собрать схему для исследования, приведённую на рисунке 14. В качестве входных напряжений U_{BX1} и U_{BX2} подать на схему синусоидальное и прямоугольное колебания. Одно из этих напряжений подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы усилителя.

Порядок выполнения задания:

- произвести измерения амплитуды входных напряжений схемы, сохранить осциллограммы входных напряжений;
- произвести измерение амплитуды выходного напряжения схемы, сохранить осциллограммы одного из входных и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;
- вычислить теоретическое (U_{вых рас}) значение коэффициента усиления схемы;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.
- 8. Исследование интегрирующей цепи на ОУ. Соберите схему, изображённую на рисунке 15 с начальным значением R = 5 кОм. Входное напряжение Uвх на схему подать с выхода генератора прямоугольных импульсов, расположенного в левом верхнем углу на той же панели, что и схема с ОУ. Это напряжение подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы интегратора.

Порядок выполнения задания:

- с помощью осциллографа измерить и записать амплитуду и частоту подаваемого на вход схемы напряжения;
- произвести измерения амплитуды напряжения на выходе схемы для двух значений резистора R (R = 5 кОм и R = 10 кОм);
- наблюдая осциллограммы, сравнить форму входного и выходного сигналов, сохранить осциллограммы входного и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;
- выбрав R = 10 кОм и подав на вход интегратора синусоидальное напряжение с выхода генератора НЧ (рис. 10), измерить с помощью вольтметров PV1.1 и PV1.2 (рис. 11) действующие значения входного и выходного напряжений интегрирующей цепи для указанных в таблице протокола значений частоты с учётом следующих особенностей:
 - тумблеры режима измерения вольтметров PV1.1 и PV1.2 установить в положение «U~» (измерение действующего значения переменного напряжения);
 - изменение частоты производится переключением диапазонов генератора («1» и «2») и вращением ручек грубой и точной настройки частоты в соответствии с таблицей в протоколе выполнения задания;

- ручка плавного изменения амплитуды выходного напряжения генератора НЧ должна быть установлена в крайнее правое положение, что соответствует максимальной амплитуде;
- вычислить экспериментальные $K_{\mbox{\tiny ЭКСПер}}$ и теоретические $K_{\mbox{\tiny Теор}}$ значения амплитудно-частотной характеристики интегрирующей цепи для частот из таблицы, построить графики зависимостей данных величин от частоты;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.
- 9. Исследование дифференцирующей цепи на ОУ. Соберите схему, изображённую на рисунке $16 \, \mathrm{c}$ начальным значением $\mathrm{R} = 10 \, \mathrm{kOm}$. Входное напряжение Uвх на схему подать с выхода генератора треугольных импульсов, расположенного в левом верхнем углу на той же панели, что и схема с ОУ. Это напряжение подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы.

Порядок выполнения задания:

- с помощью осциллографа измерить и записать амплитуду и частоту подаваемого на вход схемы напряжения;
- произвести измерения амплитуды напряжения на выходе схемы для двух значений резистора R (R = 10 кОм и R = 20 кОм);
- наблюдая осциллограммы, сравнить форму входного и выходного сигналов, сохранить осциллограммы входного и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;
- выбрав R = 10 кОм и подав на вход интегратора синусоидальное напряжение с выхода генератора НЧ (рис. 10), измерить с помощью вольтметров PV1.1 и PV1.2 (рис. 11) действующие значения входного и выходного напряжений цепи для указанных в таблице протокола значений частоты с учётом следующих особенностей:
 - тумблеры режима измерения вольтметров PV1.1 и PV1.2 установить в положение «U~» (измерение действующего значения переменного напряжения);
 - изменение частоты производится переключением диапазонов генератора («1», «2» и «3») и вращением ручек грубой и точной настройки частоты в соответствии с таблицей в протоколе выполнения задания;
 - ручка плавного изменения амплитуды выходного напряжения генератора НЧ должна быть установлена в крайнее правое положение, что соответствует максимальной амплитуде;
- вычислить экспериментальные $K_{\mbox{\tiny ЭКСПер}}$ и теоретические $K_{\mbox{\tiny Теор}}$ значения амплитудно-частотной характеристики дифференцирующей цепи для частот из таблицы, построить на одном графике кривые зависимостей данных величин от частоты;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.
- 10. Исследование активного полосового RC-фильтра. Соберите схему, изображённую на рисунке 17.

Входное напряжение U_{вх} на схему подать с выхода генератора треугольных импульсов, расположенного в левом верхнем углу на той же панели, что и схема с ОУ. Это напряжение подать также и на первый вход осциллографа, а второй вход осциллографа подключить к выходу схемы.

Порядок выполнения задания:

- с помощью осциллографа измерить и записать амплитуду и частоту подаваемого на вход схемы напряжения;
- наблюдая осциллограммы, сравнить форму входного и выходного сигналов, сохранить осциллограммы входного и выходного сигналов с экрана осциллографа для последующей вставки в отчёт;

- подав на вход исследуемой цепи синусоидальное напряжение с выхода генератора НЧ (рис. 10), измерить с помощью вольтметров PV1.1 и PV1.2 (рис. 11) действующие значения входного и выходного напряжений цепи для указанного в таблице протокола диапазона частот (от 220 Гц до 10000 Гц, в 10-12 точках) с учётом следующих особенностей:
 - тумблеры режима измерения вольтметров PV1.1 и PV1.2 установить в положение «U~» (измерение действующего значения переменного напряжения);
 - изменение частоты производится переключением диапазонов генератора («2» и «3») и вращением ручек грубой и точной настройки частоты в соответствии с таблицей в протоколе выполнения задания;
 - ручка плавного изменения амплитуды выходного напряжения генератора НЧ должна быть установлена в крайнее правое положение, что соответствует максимальной амплитуде;
- вычислить экспериментальные $K_{\mbox{\tiny ЭКСПер}}$ и теоретические $K_{\mbox{\tiny Теор}}$ значения амплитудно-частотной характеристики исследуемой цепи, построить на одном графике кривые зависимостей данных величин от частоты;
- записать в отчёт объяснение всех полученных при выполнении задания результатов.

Критерии оценивания (оценочное средство - Отчет по лабораторным работам)

Оценка	Критерии оценивания
зачтено	Практическое задание выполнено без грубых ошибок. Получены правильные ответы на вопросы по практическому заданию.
не зачтено	Практическое задание не выполнено или выполнено с грубыми ошибками, либо получены неправильные ответы на вопросы по практическому заданию.

5.2. Описание шкал оценивания результатов обучения по дисциплине при промежуточной аттестации

Шкала оценивания сформированности компетенций

Уровен ь сформи рованн ости компет енций	плохо	неудовлетвор ительно	удовлетво рительно	хорошо	очень хорошо	отлично	превосходно
снции (индик атора достиж ения компет енций)	не зач	тено			зачтено		
Знания	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки	Минимальн о допустимы й уровень знаний. Допущено много негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько несуществе нных ошибок	Уровень знаний в объеме, соответств ующем программе подготовк и. Ошибок нет.	Уровень знаний в объеме, превышающе м программу подготовки.
<u>Умения</u>	Отсутствие	При решении	Продемонс	Продемонс	Продемонс	Продемонс	Продемонстр

		минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	стандартных задач не продемонстрир ованы основные умения. Имели место грубые ошибки	трированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме	трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания в полном объеме, но некоторые с недочетами	трированы все основные умения. Решены все основные задачи. Выполнены все задания в полном объеме, но некоторые с недочетами .	трированы все основные умения. Решены все основные задачи с отдельным и несуществ енными недочетам и, выполнен ы все задания в полном объеме	ированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
<u>Ha</u>	выки	Отсутствие базовых навыков. Невозможность оценить наличие навыков вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы базовые навыки. Имели место грубые ошибки	Имеется минимальн ый набор навыков для решения стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и	Продемонс трированы базовые навыки при решении стандартны х задач без ошибок и недочетов	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов	Продемонстр ирован творческий подход к решению нестандартны х задач

Шкала оценивания при промежуточной аттестации

C	Эценка	Уровень подготовки				
	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «превосходно», продемонстрированы знания, умения, владения по соответствующим компетенциям на уровне выше предусмотренного программой					
	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично».					
зачтено	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо»				
	хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо».				
	удовлетворитель но	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»				
неудовлетворите Хотя бы одна компетенция сформирована на уровне « не зачтено		Хотя бы одна компетенция сформирована на уровне «неудовлетворительно».				
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»				

- 5.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения на промежуточной аттестации с указанием критериев их оценивания:
- 5.3.1 Типовые задания (оценочное средство Контрольные вопросы) для оценки сформированности компетенции ОПК-7
- 1. Типы транзисторов, их графические обозначения, названия выводов транзисторов. Условия межкаскадного согласования 4-полюсников.
- 2. Схемы включения транзисторов с общим эмиттером (истоком). Входные и выходные характеристики n-p-n биполярного транзистора. Выбор режима работы транзистора по постоянному току. Эквивалентная схема по переменному току. Вывод формулы для комплексного коэффициента передачи схемы по напряжению.
- 3. Схемы включения транзисторов с общей базой (затвором). Входное и выходное сопротивления схемы, эквивалентная схема по переменному току, вывод формулы для комплексного коэффициента передачи схемы по напряжению. Преимущества и недостатки схемы с общей базой по сравнению со схемой с общим эмиттером.
- 4. Схемы включения транзисторов с общим коллектором (стоком). Входное и выходное сопротивления схемы, эквивалентная схема по переменному току, вывод формулы для комплексного коэффициента передачи схемы по напряжению. Особенности и назначение схемы с общим коллектором.
- 5. Апериодический усилитель: схемы на биполярном транзисторе и на полевом с управляющим p-n переходом. Назначение всех элементов этих схем. Эквивалентная схема выходной цепи по переменному току. Вывод коэффициента передачи, АЧХ.
- 6. Резонансный усилитель: назначение элементов схемы, самой схемы, принцип работы, коэффициент передачи, AЧХ.
- 7. Однотактные усилители постоянного тока: назначение, схема, принцип работы вывод формулы для коэффициента передачи.
- 8. Дифференциальный каскад: схема, принцип работы, математическое описание, подавление синфазного сигнала, схема с источником тока на транзисторе, умножение двух сигналов.
- 9. Обобщённая схема интегрального дифференциального усилителя, принцип работы. Схема и принцип работы двухтактного усилителя, его преимущества по сравнению со схемой эмиттерного повторителя.
- 10. Операционные усилители и их применение. Свойства идеального ОУ. Инвертирующее и неинвертирующее включение ОУ, вывод коэффициента усиления этих схем. Повторитель напряжения.
- 11. Свойства идеального ОУ. Варианты применения операционных усилителей в безынерционных и инерционных линейных цепях. Интегральные компараторы.
- 12. Простейший цифро-аналоговый преобразователь. Цифро-аналоговые преобразователи с матрицами R-2R.
- 13. Простейший аналого-цифровой преобразователь: схема, принцип работы, временная диаграмма, математическое описание. Интегрирующее устройство выборки-хранения (схема, принцип работы).

- 14. АЦП последовательных приближений: схема, принцип и алгоритм работы, временная диаграмма. Интегрирующее устройство выборки-хранения (схема, принцип работы).
- 15. Параллельный АЦП: схема, принцип работы, преимущества и недостатки по сравнению с другими схемами АЦП. АЦП последовательных приближений на коммутируемых ёмкостях (схема, принцип работы).
- 16. Перемножитель Гильберта: схема, назначение, принцип работы, математическое описание.

Критерии оценивания (оценочное средство - Контрольные вопросы)

Оценка	Критерии оценивания
зачтено	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы одна компетенция сформирована на уровне «удовлетворительно»
не зачтено	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно» или «плохо»

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература:

- 1. Шкелев Евгений Иванович. Схемотехника аналоговых и аналого-цифровых электронных устройств: учеб. пособие для студентов ННГУ, обучающихся по направлению подготовки 010800 "Радиофизика" и специальности 090106 "Информ. безопасность телекоммуникац. систем" / Нижегородский государственный университет им. Н. И. Лобачевского. Н. Новгород: Изд-во ННГУ, 2012. 111 с. ISBN 978-5-91326-216-5: 87.25., 2 экз.
- 2. Гоноровский Иосиф Семенович. Радиотехнические цепи и сигналы: учеб. для студентов радиотехн. специальностей вузов. Изд. 4-е, перераб. и доп. М.: Радио и связь, 1986. 512 с.: ил. 1.70., 153 экз.

Дополнительная литература:

- 1. Манаев Евгений Иванович. Основы радиоэлектроники. 3-е изд., перераб. и доп. М. : Радио и связь, 1990. 512 с. : ил. 21-00., 4 экз.
- 2. Степаненко Игорь Павлович. Основы микроэлектроники: [учеб. пособие для вузов по специальностям "Полупроводники и диэлектрики" и "Полупроводниковые и микроэлектрон. приборы"]. М.: Советское радио, 1980. 423 с.: ил. 1.20., 15 экз.
- 3. Степаненко Игорь Павлович. Основы теории транзисторов и транзисторных схем. 3-е изд., перераб. и доп. М.: Энергия, 1973. 608 с. 30.00., 96 экз.

Программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины):

Не используется.

7. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены мультимедийным оборудованием (проектор, экран), техническими средствами обучения, специализированным оборудованием: лабораторные установки "Мультивибратор на транзисторах" и "Операционный усилитель".

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки/специальности 11.05.02 - Специальные радиотехнические системы.

Автор(ы): Ивлев Дмитрий Николаевич, кандидат физико-математических наук, доцент.

Рецензент(ы): Горбунов Александр Александрович.

Заведующий кафедрой: Фитасов Евгений Сергеевич, доктор технических наук.

Программа одобрена на заседании методической комиссии от 16.01.2024 г., протокол № №1.