МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_
«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДЕНО решением Ученого совета ННГУ протокол от (02)» декабря 2024 г. № 10

Рабочая программа дисциплины

«Сверхсильные оптические поля»

Уровень высшего образования **Подготовка кадров высшей квалификации**

Научная специальность **1.3.19** Лазерная физика

Программа подготовки научных и научно-педагогических кадров в аспирантуре **Лазерная физика**

Форма обучения **Очная**

Нижний Новгород 2025 год

1. Место и цель дисциплины в структуре ОПОП

Дисциплина «Сверхсильные оптические поля» относится к числу элективных дисциплин образовательного компонента программы аспирантуры и изучается на 2 году обучения в 3 семестре.

Цель дисциплины — ознакомление с методами генерации сверхсильных лазерных полей; изучение поведения вещества в сверхсильных полях; исследование возможностей и особенностей применения сверхсильных лазерных полей.

2. Планируемые результаты обучения по дисциплине

Выпускник, освоивший программу, должен

знать:

- фундаментальные разделы физики и радиофизики, необходимые для решения научно-исследовательских задач в области сверхсильных оптических полей;
- основные возможности современного оптического и лазерного оборудования, а также новейший отечественный и зарубежный опыт;

уметь:

- использовать знание фундаментальных разделов физики и радиофизики при решении научно-исследовательских задач в области сверхсильных оптических полей;
- использовать современное оптическое и лазерное оборудование и новейший отечественный и зарубежный опыт;

владеть:

- опытом использования знаний по фундаментальным разделам физики и радиофизики для решения научно-исследовательских задач в области сверхсильных оптических полей;
- опытом самостоятельной постановки научных задач в области квантовой радиофизики и лазерной физики и их решения с использованием современного оборудования и новейшего отечественного и зарубежного опыта.

3. Структура и содержание дисциплины.

Объем дисциплины (модуля) составляет 2 з.е., всего - 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа), 36 часов составляет самостоятельная работа обучающегося.

Структура дисциплины

<u>Таблица 2</u>

	Всего, часов	В том числе					
		Контактная работа, часов					
Наименование раздела дисциплины		Занятия лекционного типа	Занятия семинарского	Занятия лабораторного	Консультации	Всего	Самостоятельная работа обучающегося,
Введение	4	2				2	2
Генерация сверхсильных	24	12				12	12
лазерных полей							
Поведение вещества в	24	12				12	12

сверхсильных полях					
Приложения сверхсильных лазерных полей	20	10		10	10
Промежуточная аттестация	зачет				
Итого	72	36		36	36

Содержание дисциплины

Таблица 3

No	Наименование	Содержание раздела	Форма	Форма
п/п	раздела		проведения	текущего
	дисциплины		занятия	контроля
1.	Введение	История и рубежи фемтосекундной оптики. Рекордные длительности, поля и интенсивности. Характерные поля для различных нелинейных эффектов в веществе, «атомное» поле, релятивизм, нелинейность вакуума.	лекции	-
2.	Генерация сверхсильных лазерных полей	2.1. Основные принципы генерации сверхсильных оптических полей. Концепции построения фемтосекундных лазерных комплексов. Красительно-эксимерные системы, лазеры на неодимовом стекле, титан-сапфировые лазерные комплексы, широкополосные параметрические усилители. 2.2. Задающие генераторы фемтосекундных импульсов. Широкополосные активные среды. Синхронизация мод в фемтосекундных лазерах. Генерация суперконтинуума и высокостабильного «комба». Методы компенсации дисперсии групповой скорости в резонаторах. Описание генерации фемтосекундных лазеров модельным уравнением Гинзбурга-Ландау. 2.3. Усиление фемтосекундных лазерных импульсов. Концепция Chirped Pulse Amplification — усиление растянутых частотно-модулированных импульсов. Усиление в модели двухуровневой среды. Широкополосное параметрическое усиление. Ограничения на длительность, энергию и интенсивность усиливаемых имульсов. 2.4. Компрессия лазерных импульсов. Расширение спектра фемтосекундных импульсов в нелинейных средах. Оптический компрессор на дифракционных решетках.	лекции	

				I
		2.5. Фемтосекундная метрология. Методы		
		измерения длительности, амплитудно-		
		частотного распределения поля внутри		
		импульса, интенсивности и энергии		
		сверхмощных импульсов. Энергетический		
		и амплитудный контраст.		
3.		3.1. Ионизация атома в сильном	лекции	_
		оптическом поле. Ионизация атома в		
		адиабатическом приближении. Формула		
		Келдыша. Надпороговая ионизация.		
		Функия распределения фотоэлектронов.		
		Стабилизация атома в сверхсильном		
		оптическом поле.		
		3.2. Генерация высоких гармоник		
		оптического излучения и аттосекундных		
		импульсов при ионизации атомов u1080 и		
		молекул. Модель Коркума для возвратных		
		соударений электронов. Цуги		
	П	аттосекундных импульсов и одиночные		
	Поведение	аттосекундные импульсы. Измерения		
	вещества в	аттосекундных импульсов, аттосекундная		
	сверхсильных	стрик-камера.		
	полях	3.3. Электроны в релятивистски сильном		
		оптическом поле. Движение электрона в		
		поле плоской электромагнитной волны		
		произвольной амплитуды. Генерация		
		кильватерной волны в плазме		
		фемтосекундным лазерным импульсом.		
		3.4. Взаимодействие мощных		
		фемтосекундных импульсов с		
		твердотельными мишенями.		
		Экстремальные состояния вещества.		
		Ядерные процессы в присутствии		
		сверхсильных полей. Моделирование		
		процессов в недрах звезд и планет.		
4		4.1. Атмосферные приложения мощного	лекции	-
		фемтосекундного излучения.		
		Филаментация лазерного пучка, источник		
		суперконтинуума для экологического		
		мониторинга, инициация атмосферных		
		разрядов.		
	Пруунализ	4.2. Генерация когерентного		
	Приложения	рентгеновского излучения сверхкороткой		
	сверхсильных	длительности. Рентгеновские		
	лазерных	рекомбинационные лазеры с		
	полей	фемтосекундной оптической накачкой.		
		Источники на основе высоких гармоник		
		фемтосекундных излучения. Источники		
		на основе рассеяния мощных		
		фемтосекундных импульсов на		
		электронных пучках. Диагностические		
		приложения аттосекундных импульсов.		
	I.	1 1	I .	I

	4.3. Ускорители заряженных частиц на	
	основе фемтосекундных источников	
	излучения. Плазменные ускорители	
	электронов на кильватерной волне.	
	Ускорение ионов из твердотельных	
	мишеней.	
	4.4. Биомедицинские приложения	
	сверхсильных оптических полей.	
	Фазоконтрастный рентген. Производство	
	изотопов для позитронно-эмиссионной	
	томографии. Источники ионов для	
	адронной терапии.	

4. Формы организации и контроля самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает следующие виды:

- разбор лекционного материала,
- изучение дополнительных разделов дисциплины с использованием учебной литературы.

Итоговый контроль качества усвоения аспирантами содержания дисциплины проводится в виде зачета. Зачет проводится в устной форме и заключается в ответе аспирантом на теоретические вопросы курса (с предварительной подготовкой), решении задачи (с предварительной подготовкой) и последующем собеседовании в рамках тематики курса. Собеседование проводится в форме вопросов, на которые аспирант должен дать краткий ответ.

5. Фонд оценочных средств для аттестации по дисциплине

5.1. Критерии и процедуры оценивания результатов обучения по дисциплине. При выполнении всех работ учитываются следующие **основные критерии**:

- уровень теоретических знаний (подразумевается не только формальное воспроизведение информации, но и понимание предмета, которое подтверждается правильными ответами на дополнительные, уточняющие вопросы, заданные членами комиссии);
- умение использовать теоретические знания при анализе конкретных проблем, ситуаций;
- качество изложения материала, то есть обоснованность, четкость, логичность ответа,
 а также его полнота (то есть содержательность, не исключающая сжатости);
 - способность устанавливать внутри- и межпредметные связи,
- оригинальность мышления, знакомство с дополнительной литературой и другие факторы.

Описание шкалы оценивания на промежуточной аттестации в форме зачета

Оценка	Уровень подготовленности, характеризуемый оценкой					
Зачтено	владение программным материалом, понимание сущности рассматриваемых процессов и явлений, умение самостоятельно обозначить проблемные ситуации в организации научных исследований, способность критически анализировать и сравнивать существующие подходы и методы к оценке результативности научной деятельности, свободное владение источниками, умение четко и ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					
Не зачтено	непонимание смысла ключевых проблем, недостаточное владение науковедческой терминологией, неумение самостоятельно обозначить проблемные ситуации, неспособность анализировать и сравнивать существующие концепции, подходы и методы, неумение ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					

5.2. Примеры типовых контрольных заданий или иных материалов, используемых для оценивания результатов обучения по дисциплине

<u>Типовые контрольные вопросы для промежуточной аттестации по итогам освоения</u> дисциплины

- 1. Основные принципы генерации сверхсильных оптических полей. Концепции построения фемтосекундных лазерных комплексов. Красительно-эксимерные системы, лазеры на неодимовом стекле, титан-сапфировые лазерные комплексы, широкополосные параметрические усилители.
- 2. Задающие генераторы фемтосекундных импульсов. Широкополосные активные среды. Синхронизация мод в фемтосекундных лазерах. Генерация суперконтинуума и высокостабильного «комба». Методы компенсации дисперсии групповой скорости в резонаторах. Описание генерации фемтосекундных лазеров модельным уравнением Гинзбурга-Ландау.
- 3. Усиление фемтосекундных лазерных импульсов. Концепция Chirped Pulse Amplification усиление растянутых частотно-модулированных импульсов. Усиление в модели двухуровневой среды. Широкополосное параметрическое усиление. Ограничения на длительность, энергию и интенсивность усиливаемых имульсов.
- 4. Компрессия лазерных импульсов. Расширение спектра фемтосекундных импульсов в нелинейных средах. Оптический компрессор на дифракционных решетках.
- 5. Фемтосекундная метрология. Методы измерения длительности, амплитудно-частотного распределения поля внутри импульса, интенсивности и энергии сверхмощных импульсов. Энергетический и амплитудный контраст.
- 6. Ионизация атома в сильном оптическом поле. Ионизация атома в адиабатическом приближении. Формула Келдыша. Надпороговая ионизация. Функия распределения фотоэлектронов. Стабилизация атома в сверхсильном оптическом поле.
- 7. Генерация высоких гармоник оптического излучения и аттосекундных импульсов при ионизации атомов и молекул. Модель Коркума для возвратных соударений электронов. Цуги аттосекундных импульсов и одиночные аттосекундные импульсы. Измерения аттосекундных импульсов, аттосекундная стрик-камера.

- 8. Электроны в релятивистски сильном оптическом поле. Движение электрона в поле плоской электромагнитной волны произвольной амплитуды. Генерация кильватерной волны в плазме фемтосекундным лазерным импульсом.
- 9. Взаимодействие мощных фемтосекундных импульсов с твердотельными мишенями. Экстремальные состояния вещества. Ядерные процессы в присутствии сверхсильных полей. Моделирование процессов в недрах звезд и планет.
- 10. Атмосферные приложения мощного фемтосекундного излучения. Филаментация лазерного пучка, источник суперконтинуума для экологического мониторинга, инициация атмосферных разрядов.
- 11. Генерация когерентного рентгеновского излучения сверхкороткой длительности. Рентгеновские рекомбинационные лазеры с фемтосекундной оптической накачкой. Источники на основе высоких гармоник фемтосекундных излучения. Источники на основе рассеяния мощных фемтосекундных импульсов на электронных пучках. Диагностические приложения аттосекундных импульсов.
- 12. Ускорители заряженных частиц на основе фемтосекундных источников излучения. Плазменные ускорители электронов на кильватерной волне. Ускорение ионов из твердотельных мишеней.
- 13. Биомедицинские приложения сверхсильных оптических полей. Фазоконтрастный рентген. Производство изотопов для позитронно-эмиссионной томографии. Источники ионов для адронной терапии.

Типовые контрольные задачи для промежуточной аттестации по итогам освоения дисциплины

- 1. Оценить максимальную достижимую энергию частотно-модулированного лазерного импульса при усилении в Nd стекле с диаметром 20 см.
- 2. Определить максимальное число гармоник лазерного излучения Ti:Sa лазерной системы с длительностью импульса 30 фс, энергией 100 мДж, возбуждаемых при ионизации атомов водорода.
- 3. Оценить максимальный темп ускорения электронов в кильватерной волне, возбуждаемой фемтосекундным лазерным импульсом с длиной волны 800 нм и интенсивностью 10^{19} Bt/cm² в струе He с давлением 0.1 Top.

6. Учебно-методическое и информационное обеспечение дисциплины.

- а) Основная литература:
- 1. С.А. Ахманов, В.А. Выслоух, А.С. Чиркин, Оптика фемтосекундных лазерных импульсов, М.: Наука, 1988.
- 2. О. Звелто, Принципы лазеров. СПб.; М.; Краснодар: Лань, 2008. 720 с.
- 3. Н.Б. Делоне, В.П. Крайнов, Атом в сильном световом поле, М., Энергоатомиздат, 1984.
- б) Дополнительная литература:
- 1. М.В. Федоров, Электрон в сильном световом поле, М.: Наука, 1991.
- 2. Л.Д. Ландау, Е.М. Лифшиц, Теория поля, М.: Наука, 1988.
- 3. П.Г. Крюков, Фемтосекундные импульсы, М.: Физматлит, 2008.

7. Материально-техническое обеспечение дисциплины

- помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для хранения и профилактического обслуживания оборудования и помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду ННГУ;
- материально-техническое обеспечение, необходимое для реализации дисциплины, включая лабораторное оборудование;
 - лицензионное программное обеспечение: Windows, Microsoft Office;
- обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

ресурсам.

Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, Положением о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Постановление Правительства РФ от 30.11.2021 № 2122), Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Приказ Минобрнауки РФ от 20.10.2021 № 951).

Авторы:

Автор М.Ю. Рябикин

Рецензент А.П. Савикин

Заведующий кафедрой М.И. Бакунов

Программа одобрена на заседании Методической комиссии Института /факультета от «02» декабря 2024 года, протокол № 10.