МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет Кафедра физики полупроводников, электроники и наноэлектроники

УТВЕРЖДЕНО решением ученого совета ННГУ протокол № 6 от «31» мая 2023 г.

Рабочая программа дисциплины

Физические основы микро- и наносистемной техники

Уровень высшего образования бакалавриат

Направление подготовки: 11.03.04 Электроника и наноэлектроника Направленность (профиль): твердотельная электроника и наноэлектроника

Форма обучения: очная

1. Место и цели дисциплины в структуре ОПОП

Дисциплина «Материалы и методы нанотехнологии» относится к выборным дисциплинам формируемой участниками образовательных отношений части основной образовательной программы по направлению подготовки 11.03.04 «Электроника и наноэлектроника».

В рамках курса «Физические основы микро- и наносистемной техники» рассматриваются основные конструктивные элементы приборов, таких как микроакселерометр, микрогироскоп и основные виды движений этих элементов. Также рассматриваются основы технологических процессов, используемых при изготовлении приборов микросистемной техники, такие как различные виды нанесения материалов, фотолитографий и травления. Освоение курса «Физические основы микро- и наносистемной техники» опирается на знания, умения, навыки и компетенции, сформированные на двух предшествующих уровнях образования. Для усвоения данного курса необходимы знания по таким модулям и дисциплинам в рамках образовательной программы бакалавра как модуль «Математика», «Физика» и «Химия» базовой части цикла математических и естественнонаучных дисциплин, курсы «Физика конденсированного состояния» и «Физика полупроводников» базовой части профессионального цикла.

Цель изучения дисциплины

Целью освоения дисциплины «Физические основы микро- и наносистемной техники» является формирование у студентов знаний в области методов создания и базовых физических принципах функционирования компонентов микро- и наносистемной техники.

Задачами курса

Задачами курса является изучение физических основ функционирования компонентов микро- и наносистемной техники. В курсе изучаются технологии создания основных компонентов микро- и наносистемной техники, таких как: микромеханические, термоэлектрические, оптические, химические и биологические сенсоры; микроакселерометры, микрогироскопы; актюаторы, микромеханические приводы движения, аналитические микро-и наносистемы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код, содержание	енции (модулю), в соответствии с индикатором достиже-		
компетенции) Индикатор дост ния компетенц (код, содержание дикатора)		Результаты обучения по дисциплине	
ПК-1. Способен применять фундаментальные представления о физических явлениях для достижения требуемых функциональных качеств приборов, схем	ПК-1.1. Знает физические явления и процессы, лежащие в основе работы приборов и устройств электроники и наноэлектроники. ПК-1.2. Умеет применять фундаменталь-	Знать фундаментальные основы проектирования и производства объектов, систем и процессов в области нанотехнологий и микросистемной техники. Уметь выбирать нужный технологический процесс при создании приборов микроси-	Вопросы по темам/разделам дисциплины. Комплект заданий к лабораторному практикуму.

и устройств электроники и наноэлектроники.	ные представления о физических явлениях и процессах для достижения требуемых функциональных качеств приборов и устройств электроники и наноэлектроники.	стемной техники; Иметь навыки проектирования объектов, систем и процессов в области нанотехнологий и микросистемной техники.	Фонд тестовых заданий
ПК-2. Способен строить физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования, проектирования и конструирования.	ПК-2.1. Знает принципы конструирования отдельных аналоговых блоков электронных приборов. ПК-2.2. Умеет строить физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения. ПК-2.3. Владеет навыками использования стандартных программных средств их компьютерного моделирования и проектирования.	Знать фундаментальные основы нанотехнологий, физические свойства систем с пониженной размерностью, современные тенденции развития нанотехнологий. Уметь применять знания об основах нанотехнологий и физических свойствах систем с пониженной размерностью в своей профессиональной деятельности.	Вопросы по темам/разделам дисциплины. Комплект заданий к лабораторному практикуму. Фонд тестовых заданий

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

Общая трудоемкость	2 3ET	
Часов по учебному плану	72	
в том числе		
аудиторные занятия (контактная работа):		
- занятия лекционного типа	32	
- занятия лабораторного типа	16	
- контроль самостоятельной работы	1	
самостоятельная работа	23 (работа в семестре)	
Промежуточная аттестация	7 семестр – зачет	

3.2. Содержание дисциплины

_				Вт	ом числ	e	
		Контактная работа, часов					
Наименование раздела дисци- плины	Всего, часов	Занятия лекционного типа	Занятия лабораторно- го типа	Занятия семинарского типа	Всего	Самостоятельная работа обучаю- щегося, часов	
1. Введение в микросистемную технику.	3	2			2	1	
2. Основы анализа колебаний механических систем.	7	2	3		5	2	
3. Демпфирование колебаний	11	6	3		9	2	
4.Напряженно-деформированное состояние опорных элементов микросистемных приборов	11	4	3		7	4	
5. Датчики давления	10	6			6	4	
6. Микроакселерометры	8	4			4	4	
7. Микрогироскопы	11	4	3		7	4	
8. Технологии создания приборов микросистемой техники	10	4	4		8	2	
Аттестация по дисциплине - зачет,	1 чис						

Содержание разделов дисциплины

- 1. Цели и задачи изучения дисциплины. Основные понятия и определения. Обзор базовых компонентов и конструкций элементной базы микро- и наносистемной техники. Классификация элементов по функциональному назначению и принципу действия.
 - 2. Гармонические колебания. Собственные колебания. Вынужденные колебания.
 - 3. Конструкционное и вязкостное демпфирование колебаний.
- 4. Деформация прямоугольной и круглой мембраны. Типы подвесов и особенности их деформации.
 - 5. Датчики давления с прямоугольной и квадратной мембраной.
- 6. Микромеханические акселерометры. Емкостной преобразователь перемещений. Осевые и акселерометры с линейным перемещением. Маятниковые акселерометры с угловым перемещением. Оси чувствительности акселерометра.
 - 7. Микрогироскопы. Гироскопы LL и RR типа. Оси чувствительности гироскопа.
 - 8. Материалы микросистемной техники. Виды травления. Виды литографии.

4. Образовательные технологии

Занятия по дисциплине проходят в лекционной форме, в форме лабораторных работ и контроля самостоятельной работы (проверка заданий для лабораторных работ).

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Виды самостоятельной работы. Самостоятельная работа в рамках курса выполняется в форме лабораторных работ по моделированию базовых элементов микросистемной техники в системах компьютерного моделирования (проектирования).

Задания для лабораторных работ:

- 1. Построить в программе FeeCAD модель консольной балки в виде прямоугольного параллепипеда, закрепленного с одной стороны и нагруженного с противоположной. Рассчитать методом конечных элементов смещение нагруженного конца балки вдоль оси приложения силы. Исследовать величину смещения в зависимости от соотношения сторон параллепипеда.
- 2. Построить в программе FeeCAD модель нагруженной двухопорной консольной балки в виде прямоугольного параллепипеда. Рассчитать методом конечных элементов смещение центральной точки балки вдоль оси приложения силы.
- 3. Построить в программе FeeCAD модель нагруженной консольной ломаной Гобразной балочной опоры. Рассчитать методом конечных элементов смещение нагруженного конца балки вдоль оси приложения силы. Исследовать величину смещения в зависимости от соотношения длин балок Гобразной балочной опоры.
- 4. Построить в программе FeeCAD модель прямоугольной мембраны. Рассчитать методом конечных элементов смещение центра равномерно нагруженной мембраны вдоль оси приложения силы.
- 5. Построить в программе FeeCAD модель круглой мембраны. Рассчитать методом конечных элементов смещение центра равномерно нагруженной мембраны вдоль оси приложения силы.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине включающий:

6.1. Описание шкал оценивания результатов обучения по дисциплине

Уровень сформиро-	Шкала оценивания сформированности компетенций						
ванности компетенций (индикатора	плохо	неудовле- творительно	удовлетво- рительно	хорошо	очень хоро- шо	отлично	превосходно
достижения компетенций)	Не за	Не зачтено		зачтено			
Знания	Отсутствие знаний тео- ретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки.	Минимально допустимый уровень знаний. Допущено много негрубых ошибки.	Уровень знаний в объеме, соответ-ствующем программе подготов-ки. Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответствующем программе подготовки. Допущено несколько несущественных ошибок	Уровень знаний в объеме, соответствующем программе подготовки, без ошибок.	Уровень знаний в объеме, превышающем программу подготовки.
<u>Умения</u>	Отсутствие минималь- ных умений . Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрированы основные умения. Имели место грубые ошибки.	Продемон- стрированы основные умения. Ре- шены типо- вые задачи с негрубыми ошибками. Выполнены все задания но не в пол- ном объеме.	Продемон- стрированы все основ- ные уме- ния. Реше- ны все ос- новные задачи с негрубыми ошибками. Выполнены все зада- ния, в пол- ном объе- ме, но не- которые с недочета- ми.	Продемон- стрированы все основные умения. Ре- шены все основные задачи . Вы- полнены все задания, в полном объ- еме, но неко- торые с недочетами.	Продемон- стрированы все основ- ные уме- ния, решен ы все ос- новные задачи с отдельны- ми несуще- ственным недочета- ми, выпол- нены все задания в полном объеме.	Продемон- стрированы все основные умения,. Ре- шены все основные задачи. Вы- полнены все задания, в полном объеме без недочетов
<u>Навыки</u>	Отсутствие владения материалом. Невозможность оценить наличие навыков вследствие отказа обучающегося	При решении стандартных задач не продемонстрированы базовые навыки. Имели место грубые ошибки.	Имеется минимальный набор навыков для решения стандартных задач с некоторыми недочетами	Продемон- стрированы базовые навыки при реше- нии стан- дартных задач с некоторы- ми недоче-	Продемон- стрированы базовые навыки при решении стандартных задач без ошибок и недочетов.	Продемон- стрированы навыки при реше- нии не- стандарт- ных задач без ошибок и недоче-	Продемон- стрирован творческий подход к решению нестандарт- ных задач

от ответа		тами	тов.	

Перечень компетенций выпускников образовательной программы, в формировании которых участвует дисциплина, с указанием результатов обучения (знаний, умений, владений) приведён выше (раздел 2). Ниже приведена таблица образовательных дескрипторов (отличительных признаков уровней освоения компетенций).

Уровень освое-	
ния компетен-	Отличительные признаки
ции	
Начальный	 воспроизводит термины и основные понятия физических явлениях в приборах, схемах и устройствах электроники и наноэлектроники; корректно объясняет суть физических явлениях в приборах, схемах и устройствах электроники и наноэлектроники; способен сопоставлять физические явления в приборах, схемах и устройствах электроники и наноэлектроники.
Базовый	 выявляет взаимосвязь между структурой и свойствами; применяет законы, правила, алгоритмы, теоретические модели и пр.; знает фундаментальные основы процессов получения и функционирования приборов электроники и наноэлектроники различного функционального назначения; знает предельные возможности технологий, применяемых при производстве приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения; знает принципы выбора материалов для проведения технологических процессов.
Высокий	 знает современные технологические методы формирования приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения; формулирует выводы; оценивает соответствие теории и эксперимента; оценивает научную и прикладную значимость результатов.

Промежуточный контроль качества усвоения студентами содержания дисциплины проводится в виде зачета (7 семестр), на котором определяются:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала;
- способности студентов использовать полученные знания для выполнения конкретных заданий.

Зачет проводится по итогам выполнения лабораторных работ и знания теоретических разделов дисциплины, запланированных для изучения в осеннем семестре. Результаты оформляются в виде отчетов по лабораторным работам.

Критерии выставления оценки при сдаче зачета:

Зачтено	Выполнены все задания лабораторной работы. Отчеты оформлены правиль-
	но, полно и аккуратно. Представлены все необходимые рисунки, схемы и гра-
	фики. Оформление графиков полностью соответствует общепринятым требо-
	ваниям. Могут присутствовать незначительные недочёты, которые студент по-
	сле замечания преподавателя способен исправить самостоятельно.
	Студент отвечает полностью на вопросы зачета, показывая удовлетвори-
	тельное знание основ курса и базовых понятий. При ответе на дополнительные
	вопросы допускаются незначительные неточности.
Не зачте-	Не выполнены отчеты по лабораторным работам, одно или более заданий ла-
	бораторных работ. Отчеты выполнены с ошибками, не все рисунки и схемы
	представлены. Оформление графиков не соответствует общепринятым требова-
	ниям. Требования к оформлению отчетов не соблюдены.
	Студент показывает неудовлетворительное знание основ курса и базовых по-
	нятий.

6.2. Критерии и процедуры оценивания результатов обучения по дисциплине, характеризующие этапы формирования компетенций.

Для получения зачета необходимо ответить на два вопроса.

Вопросы для проведения зачета по итогам освоения дисциплины:

- 1. Классификация приборов микросистемной техники по функциональному назначению и принципу действия.
- 2. Обзор базовых компонентов и конструкций элементной базы микро- и наносистемной техники.
- 3. Гармонические колебания. Собственные колебания.
- 4. Вынужденные колебания. Резонанс.
- 5. Типы демпфирования колебаний.
- 6. Микромеханические сенсоры. Чувствительные элементы: пьезорезистивные, пьезоэлектрические, емкостные.
- 7. Напряженно-деформированные состояния круглого и прямоугольного чувствительного элемента.
- 8. Микромеханические акселерометры. Емкостной преобразователь перемещений. Осевые и акселерометры с линейным перемещением. Маятниковые акселерометры с угловым перемещением. Оси чувствительности акселерометра.
- 9. Балки и торсионы в конструкциях микроакселерометров. Напряженно-деформированные состояния в консольных балочных опорах.

- 10. Моменты силы Кориолиса. Типы микрогироскопов. Оси чувствительности микрогироскопов.
- 11. Материалы микросистемной техники и их свойства.
- 12. Моно- и поликристаллический кремний. Методы нанесения и обработки.
- 13. Типы травления.
- 14. Типы литографических процессов.

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине (модулю), характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде **знаний** используются индивидуальное собеседование по знанию современных тенденций развития электроники, измерительной и вычислительной техники, информационных технологий.

Для оценивания результатов обучения в виде умений и владений используются практические контрольные задания:

Задания на установление правильной последовательности умения учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;

Описания алгоритма выполнения действия по умению применять фундаментальные представления о фундаментальных основах технологических процессов получения материалов и компонентов электроники и наноэлектроники.

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Задания на знания:

Является ли уменьшение технологического процесса тенденцией современной микроэлектроники?

Какие физические явления и процессы лежать в основе работы приборов микроэлектроники? Какие физические явления и процессы лежать в основе работы приборов микросистемной техники?

Детально разобрать фундаментальные основы технологических процессов получения материалов и компонентов нано- и микросистемной техники.

Задания на умения и владения:

Детально представить правильную последовательность исторически научно и технологически непротиворечивой последовательности современной тенденции развития электроники, измерительной и вычислительной техники.

Описания алгоритм выполнения действия по умению применять фундаментальные представления о физических явлениях и процессах для достижения требуемых функциональных характеристик датчика давления с круглой мембраной.

Указать возможное влияние факторов на последствия реализации умения использовать фундаментальные основы технологических процессов получения одноконсольной упругой балки из кристаллического кремния.

Устно и с использованием пояснительных рисунков показать правильные задания на оценку последствий принятых решений владения опытом использования аналогового двухосевого акселерометра.

Устно и с использованием пояснительных рисунков показать правильные задания на оценку эффективности выполнения действия владения опытом использования фундаментальные представления о физических явлениях и процессах для достижения требуемых функциональных характеристик цифрового микрогироскопа.

6.5. Методические материалы, определяющие процедуры оценивания.

Оценочные средства для контроля текущей успеваемости включают в себя контрольные вопросы, задаваемые в ходе выполнения лабораторных работ и при проверке выполненных рефератов.

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Техническая механика микросистем: учебное пособие / под ред. В.Н. Тимофеева. М.: БИНОМ. Лаборатория знаний, 2009. 176 с. http://www.studentlibrary.ru/book/ISBN9785996321155.html -доступ с компьютеров ННГУ.
- 2. Введение в микросистемную технику [Электронный ресурс]: Учеб. пособие / О. С. Нарайкин, К. Г. Потловский, В. В. Холевин. М.: Издательство МГТУ им. Н. Э. Баумана, 2011. http://www.studentlibrary.ru/book/bauman_0489.html -доступ с компьютеров ННГУ.
- 3. Технология микросистемной техники. Ч.1. Методы микрообработки [Электронный ресурс]: Учеб. пособие / О.С. Нарайкин, В.В. Холевин, И.И. Данилов, В.А. Шалаев. М.: Издательство МГТУ им. Н. Э. Баумана, 2010. http://www.studentlibrary.ru/book/bauman_0467.html -доступ с компьютеров ННГУ.

б) дополнительная литература:

1. Проектирование микросистем. Программные средства обеспечения САПР: учебное пособие. Левицкий А.А., Маринушкин П.С. https://e.lanbook.com/book/6046#authors

в) программное обеспечение и Интернет-ресурсы

1. Журнал «Нано- и микросистемная техника» http://www.microsystems.ru

8. Материально-техническое обеспечение дисциплины

Помещения представляют собой учебные аудитории для проведения учебных занятий, предусмотренных программой, оснащенные оборудованием и техническими средствами обучения: специализированной мебелью, меловыми или магнитно-маркерными досками для представления учебной информации большой аудитории.

При выполнении лабораторных работ используются лаборатории кафедры физики полупроводников, электроники и наноэлектроники. При выполнении лабораторных работ для математического моделирования элементов микросистемной техники и их функционирования используется программные пакеты автоматических инженерных расчётов (Elmer FEM solver, свободный доступ). Используются микрочипы микромеханических преобразователей (микрокомпас, микрогироском, микроакселерометр) и системы сбора данных.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями установленного ННГУ образовательного стандарта высшего образования по направлению подготовки 11.03.04 – «Электроника и наноэлектроника».

Автор:

к.ф.-мат. наук, доцент физики полупроводников, электроники и наноэлектроники А.В. Кудрин

Рецензент:

заведующий кафедрой теоретической физики, д.ф.-м.н.

В.А. Бурдов

Заведующий кафедрой физики полупроводников, электроники и наноэлектроники д.ф.-м.н. профессор

Д. А. Павлов

Программа одобрена на заседании Учебно-методической комиссии физического факультета ННГУ, протокол б/н от «20» мая 2023 г.

Председатель Учебно-методической комиссии физического факультета ННГУ А.А. Перов