МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_ «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Физический факультет
1 0
УТВЕРЖДЕНО
решением Ученого совета ННГУ
pemennem v action o coberta i i i i
протокол № 12 от 09.11.2022 г.
Рабочая программа дисциплины
 Применение численных методов в физике
Уровень высшего образования
Бакалавриат
Направление подготовки / специальность
09.03.02 - Информационные системы и технологии
Направленность образовательной программы
Информационные технологии в системах космической связи
Форма обучения
очная

г. Нижний Новгород

2022 год начала подготовки

1. Место дисциплины в структуре ОПОП

Дисциплина Б1.В.1.06 Применение численных методов в физике относится к части, формируемой участниками образовательных отношений образовательной программы.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции	Планируемые результат (модулю), в соответ	ы обучения по дисциплине гствии с индикатором	Наименование оце	ночного средства
(код, содержание компетенции) ПК-14: Способен	достижения компетенци Индикатор достижения компетенции (код, содержание индикатора) ПК-14.1: Знать основные	и Результаты обучения по дисциплине ПК-14.1:	Для текущего контроля успеваемости Допуск к	Для промежуточной аттестации
обосновывать правильность выбранной модели, сопоставляя результаты экспериментальных	методы обработки и сравнения результатов экспериментальных данных и полученных решений ПК-14.2: Уметь обосновывать правильность	Знать основные свойства физических моделей, терминологию, взаимосвязь модели и физических законов, с помощью которых модель описывается.	лабораторной работе	Зачёт с оценкой: Отчет по лабораторным работам
данных и полученных решений в области применения информационных технологий в физических исследованиях и смежных областях.	выбранной модели ПК-14.3: Владеть опытом выбора и обоснования правильности выбранной модели, сопоставления результатов экспериментальных данных и полученных решений	ПК-14.2: Уметь применять методы моделирования, тестирования результатов. ПК-14.3: Владеть численными методами для реализации разрабатываемых моделей.		

3. Структура и содержание дисциплины

3.1 Трудоемкость дисциплины

	очная
Общая трудоемкость, з.е.	3
Часов по учебному плану	108
в том числе	
аудиторные занятия (контактная работа):	
- занятия лекционного типа	16
- занятия семинарского типа (практические занятия / лабораторные работы)	32
- КСР	1
самостоятельная работа	59

Промежуточная аттестация	0
	Зачёт с оценкой

3.2. Содержание дисциплины

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

Наименование разделов и тем дисциплины	Всего		в том ч	исле	
		Контактная работа (работа во взаимодействии с преподавателем), часы из них			
		Занятия лекционного типа	Занятия семинарского типа (практические занятия/лабора торные работы), часы	Bcero	Самостоятельная работа обучающегося, часы
	о ф о	О Ф О	о ф о	о Ф 0	О Ф О
Тема 1 Введение в дисциплину	3	1	0	1	2
Тема 2 Этапы построения и реализации физических моделей. Сдача допуска по выбранной задаче	21	3	6	9	12
Тема 3 Физическая постановка задачи. Математическая постановка задачи. Составление дифференциальных уравнений, описывающих движение классических частиц.	20	4	6	10	10
Тема 4 Этапы программирования. Выбор параметров модели, начальных и граничных условий	14	2	4	6	8
Тема 5 Визуализация результатов расчетов методом мультипликации.	14	2	4	6	8
Тема 6 Тестирование задачи и сравнение с результатами реальных движений.	16	2	6	8	8
Тема 7 . Оформление результатов в виде отчета. Сдача задачи и отчета по ней.	19	2	6	8	11
Аттестация	0				
КСР	1			1	
Итого	108	16	32	49	59

Содержание разделов и тем дисциплины

- 1. Введение в дисциплину. Историческая справка. Примеры физических моделей. Возможности и ограничения моделирования.
- 2. Этапы построения и реализации физических моделей. Сбор информации о явлении (процессе). Постановка задачи и обоснование возможности ее решения. Разработка алгоритма. Программирование. Тестирование. Оформление документации.
- 3 Физическая постановка задачи. Запись физических законов, формул применительно к рассматриваемой задаче. Выбор системы отсчета, системы единиц. Аналитическая оценка ожидаемых результатов моделирования.
- 4. Математическая постановка задачи. Выбор и обоснование методов численного решения задачи. Оценка потребности вычислительных ресурсов.
- 5. Составление дифференциальных уравнений, описывающих движение классических частиц. Примеры для описания движения частиц в гравитационном поле: движение спутников и планет; колебательные движения с одной и несколькими степенями свободы.

- 6. Этапы программирования. Разработка алгоритма. Составление программы на алгоритмическом языке высокого уровня. Задание параметров модели. Задание начальных и граничных условий.
- 7. Визуализация результатов расчетов методом мультипликации: пример программирования на языке Visual C++.
- 8. Тестирование задачи и сравнение с результатами реальных движений. Примеры движения спутников и планет. Теоретический расчет периодов некоторых колебательных движений.
- 9. Оформление результатов в виде отчета. Титульный лист. Постановка задачи. Основные физические и математические формулы. Результаты тестирования в виде таблиц, диаграмм, графиков. Оформление графического материала. Выводы. Список литературы.

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает в себя подготовку к контрольным вопросам и заданиям для текущего контроля и промежуточной аттестации по итогам освоения дисциплины приведенным в п. 5.

Практические задания для студентов собраны в методическом пособии: Васин А.С. Применение численных методов к моделированию физических процессов: Практикум. – 2-е изд. исправл. и доп. – Нижний Новгород: Нижегородский госуниверситет, 2021. 44 с.

В нем приведены тексты задач, основные формулы численного решения дифференциальных уравнений, даны методические указания по разработке алгоритма и программы, требования при сдаче выполненного задания преподавателю, требования и рекомендации по составлению отчета по работе.

- 5. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю)
- 5.1 Типовые задания, необходимые для оценки результатов обучения при проведении текущего контроля успеваемости с указанием критериев их оценивания:
- 5.1.1 Типовые задания (оценочное средство Допуск к лабораторной работе) для оценки сформированности компетенции ПК-14:

Вопросы для сдачи допусков. В каждой задаче вопросы индивидуальны. Вместе с тем, имеется некоторое количество общих вопросов.

	Код формируемой компетенции
1. Выбор системы координат для описания движения.	ПК-14.1
2. Запись основных физических законов, описывающих движение.	ПК-14.1
3. Преобразование их к системе дифференциальных уравнений.	ПК-14.1

	ПК-14.2
4. Начальные и граничные условия.	ПК-14.2
5. Методы численного решения дифференциальных уравнений.	ПК-14.2
	ПК-14.3
6. Выбор физических параметров движения.	ПК-14.2
	ПК-14.3
7. Выбор шага по времени.	ПК-14.2
	ПК-14.3
8. Проверка законов сохранения энергии, импульса, момента импульса.	ПК-14.1
9. Интерфейс программы.	ПК-14.2
	ПК-14.3
10. Способы проверки правильности работы программы.	ПК14.3

Критерии оценивания (оценочное средство - Допуск к лабораторной работе)

Оценка	Критерии оценивания
зачтено	Составлены физическая и математическая модель задачи. Записаны дифференциальные уравнения движения и начальные условия. Оценены параметры задачи. Указаны методы тестирования программы. Разработан интерфейс программы.
не зачтено	До тех пор, пока не будут выполнены все пункты из раздела "Зачтено"

5.2. Описание шкал оценивания результатов обучения по дисциплине при промежуточной аттестации

Шкала оценивания сформированности компетенций

		•	- T	F F -		•	
Уровен ь сформи рованн ости компет	плохо	неудовлетвор ительно	удовлетво рительно	хорошо	очень хорошо	отлично	превосходно
енций (индик атора достиж	не зач	тено			зачтено		

ения компет				,	,		
Знания	Отсутствие знаний теоретического материала. Невозможность оценить полноту знаний вследствие отказа обучающегося от ответа	Уровень знаний ниже минимальных требований. Имели место грубые ошибки	Минимальн о допустимы й уровень знаний. Допущено много негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько негрубых ошибок	Уровень знаний в объеме, соответству ющем программе подготовки . Допущено несколько несуществе нных ошибок	Уровень знаний в объеме, соответств ующем программе подготовк и. Ошибок нет.	Уровень знаний в объеме, превышающе м программу подготовки.
Умения	Отсутствие минимальных умений. Невозможность оценить наличие умений вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы основные умения. Имели место грубые ошибки	Продемонс трированы основные умения. Решены типовые задачи с негрубыми ошибками. Выполнены все задания, но не в полном объеме	Продемонс трированы все основные умения. Решены все основные задачи с негрубыми ошибками. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи. Выполнены все задания в полном объеме, но некоторые с недочетами	Продемонс трированы все основные умения. Решены все основные задачи с отдельным и несуществ енными недочетам и, выполнен ы все задания в полном объеме	Продемонстр ированы все основные умения. Решены все основные задачи. Выполнены все задания, в полном объеме без недочетов
Навыки	Отсутствие базовых навыков. Невозможность оценить наличие навыков вследствие отказа обучающегося от ответа	При решении стандартных задач не продемонстрир ованы базовые навыки. Имели место грубые ошибки	Имеется минимальн ый набор навыков для решения стандартны х задач с некоторым и недочетами	Продемонс трированы базовые навыки при решении стандартны х задач с некоторым и	Продемонс трированы базовые навыки при решении стандартны х задач без ошибок и недочетов	Продемонс трированы навыки при решении нестандарт ных задач без ошибок и недочетов	Продемонстр ирован творческий подход к решению нестандартны х задач

Шкала оценивания при промежуточной аттестации

0	ценка	Уровень подготовки				
	превосходно	Все компетенции (части компетенций), на формирование которых направле дисциплина, сформированы на уровне не ниже «превосходно», продемонстрирован знания, умения, владения по соответствующим компетенциям на уровне выпредусмотренного программой				
зачтено	отлично	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «отлично».				
	очень хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «очень хорошо»				
	хорошо	Все компетенции (части компетенций), на формирование которых направлена дисциплина, сформированы на уровне не ниже «хорошо».				

	удовлетворитель	Все компетенции (части компетенций), на формирование которых направлена			
	но	дисциплина, сформированы на уровне не ниже «удовлетворительно», при этом хотя бы			
		одна компетенция сформирована на уровне «удовлетворительно»			
	неудовлетворите	Хотя бы одна компетенция сформирована на уровне «неудовлетворительно».			
	льно				
не зачтено					
ine sur inemo					
	плохо	Хотя бы одна компетенция сформирована на уровне «плохо»			

- 5.3 Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения на промежуточной аттестации с указанием критериев их оценивания:
- 5.3.1 Типовые задания (оценочное средство Отчет по лабораторным работам) для оценки сформированности компетенции $\Pi K\text{-}14$

Nº	Задание	Перече компет ий
1	13. Проверка третьего закона Кеплера для эллиптических орбит.	
	Третий закон Кеплера формулируется так: «Для всех планет, вращающихся вокруг Солнца, отношение T^2 / a^3 одинаково (T — период обращения, a — большая полуось эллипса)». Для его проверки смоделировать движение спутника вокруг Земли, пренебрегая воздействием всех других небесных тел. Подобрать начальные координаты и начальную скорость спутника так, чтобы получилось несколько разных эллиптических орбит. Для каждой орбиты определить полную энергию, момент импульса L_Z , большую и малую полуоси, эксцентриситет, период обращения. Проверить постоянство отношения T^2 / a^3 . Показывать Землю и траекторию движения спутника.	ПК-14. ПК-14.:
2	16. <u>Моделирование движения одной планеты в поле тяготения двух неподвижных звездодинаковой массы.</u>	ПК-14.
	Смоделировать движение планеты, подобной Земле, в поле тяготения двух неподвижных звезд. В этом случае никаких замкнутых орбит не существует, но все орбиты можно разделить на устойчивые и неустойчивые. Устойчивыми орбитами могут быть открытые петли, охватывающие обе звезды, орбиты в виде восьмерки или кеплеровские орбиты вокруг только одной звезды. В случае неустойчивых орбит планета, в конце концов, упадет на одну из звезд.	ΠΚ-14.2 ΠΚ-14.3
	Исследовать возможные орбиты в зависимости от начального положения и начальной скорости планеты, а также от соотношения масс между звездами. Подобрать не менее 8 различных начальных условий для планеты, приводящих к наиболее интересным орбитам. Можно выбрать массы звезд не сильно отличающиеся от массы Солнца, а расстояние	

	25. <u>Пружинный маятник.</u>
	Смоделировать движение тела массы m , скользящего вдоль гладкой спицы под действием 2-х одинаковых невесомых пружин с жесткостью k по гладкой
	горизонтальной поверхности. В равновесии пружины не деформированы.
	а) Определить период колебаний при заданных числовых значениях k и m , сравнить его с георетически полученным. Рассмотреть 2 вида начальных условий:
б ч д г) к	1 – тело начинает движение из смещенного положения с нулевой начальной скоростью;
	2 – тело начинает движение из положения равновесия с заданной начальной скоростью.
	б) Исследовать колебания при постоянной силе трения скольжения.
	в) Ввести коэффициент вязкого трения β и исследовать затухающие колебания (считать, что сила вязкого трения пропорциональна скорости). Определить логарифмический декремент затухания и сравнить его с теоретически полученным.
	г) При наличии вязкого трения задать периодическую вынуждающую силу $F = F0 \cdot \sin(\omega t)$.
	Подобрать $F0$ такой величины, чтобы можно было проследить установление вынужденных
	колебаний. Исследовать зависимость амплитуды вынужденных колебаний от частоты ω
	вынуждающей силы. Определить резонансную частоту $\ \omega_{pe3}$ и сравнить ее с теоретической.

Критерии оценивания (оценочное средство - Отчет по лабораторным работам)

Оценка	Критерии оценивания
превосходно	Все задания выполнены. Рассмотрены некоторые вопросы сверх программы. Отчет написан и оформлен грамотно
отлично	Все задания выполнены. Отчет написан и оформлен грамотно.
очень хорошо	Все задания выполнены. Отчет написан и оформлен с небольшими погрешностями
хорошо	Задания выполнены с некоторыми погрешностями. Отчет написан и оформлен с небольшими погрешностями
удовлетворительно	Задания выполнены с существенными ошибками. Отчет написан.
неудовлетворительно	Задания выполнены менее, чем наполовину. Отчет не написан.

Оценка	Критерии оценивания
плохо	Не сделано ничего

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература:

- 1. Васин Александр Сергеевич. Применение численных методов к моделированию физических процессов: методические указания и задания / А. С. Васин; Нижегор. гос. ун-т им. Н. И. Лобачевского, Физ. фак., Каф. информ. технологий в физ. исследованиях. Нижний Новгород: ННГУ, 2007. 24 с., 30 экз.
- 2. Фаддеев Михаил Андреевич. Численные методы : учеб. пособие / ННГУ. Н. Новгород : Изд-во Нижегор. гос. ун-та, 2005. 156 с. ISBN 5-85746-828-0 : 30.00., 211 экз.
- 3. Сивухин Дмитрий Васильевич. Общий курс физики : учеб. пособие для студентов физ. специальностей вузов. Т. 1. Механика. 1974. 519 с. : ил. Предм. указ.: с. 515 519. 1.39., 77 экз.
- 4. Муравьев Владимир Алексеевич. Практическое введение в пакет MATHEMATICA: учебное пособие / Нижегородский государственный университет им. Н. И. Лобачевского. Изд. 2-е, испр. и доп. Н. Новгород: Изд-во ННГУ, 2010. 195 с. ISBN 978-5-91326-142-7: 42.96., 191 экз.
- 5. Васин А. С. Применение численных методов к моделированию физических процессов: Практикум / Васин А. С. 2-е изд., испр. и доп. Нижний Новгород : ННГУ им. Н. И. Лобачевского, 2021. 44 с. Рекомендовано методической комиссией физического факультета для студентов физического факультета ННГУ, обучающихся по направлению подготовки 09.03.02 «Информационные системы и технологии». Библиогр.: доступна в карточке книги, на сайте ЭБС Лань. Книга из коллекции ННГУ им. Н. И. Лобачевского Физика., https://e-lib.unn.ru/MegaPro/UserEntry?Action=FindDocs&ids=783197&idb=0.

Дополнительная литература:

- 1. Гулд Харви. Компьютерное моделирование в физике : [в 2 ч.]. Ч. 1 / пер. с англ. А. Н. Полюдова, В. А. Панченко. М. : Мир , 1990. 349 с. : ил. ISBN 5-03-001593-0 : 2.20., 2 экз.
- 2. Юнаковский Алексей Дмитриевич. Начала вычислительных методов для физиков / РАН, Ин-т прикладной физики. Н. Новгород : ИПФ РАН, 2007. 220 с. ISBN 978-5-8048-0055-1 : 104.00., 63 экз.
- 3. Кунин Стивен Е. Вычислительная физика / пер. с англ. А. Д. Баркалова, А. Н. Явохина ; под ред. А. Н. Матвеева. М. : Мир, 1992. 518 с. 122.00., 2 экз.

Программное обеспечение и Интернет-ресурсы (в соответствии с содержанием дисциплины):

- 1. Пакет MicrosoftVizual C++ в среде Microsoft Visual Studio., установленный в компьютерном классе.
- 2. Пакет компьютерных аналитических и графических вычислений для персонального

компьютера. Допускается применение сред Wolfram Mathematica (имеется в компьютерном классе), Matlab, MathCAD, Maple или любых иных компьютерных ресурсов аналогичного назначения.

3. Интернет-ресурс справочной и математической литературы со свободным доступом www.eqworld.ipmnet.ru

7. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой, оснащены мультимедийным оборудованием (проектор, экран), техническими средствами обучения, компьютерами, специализированным оборудованием: 12 компьютеров в терминал-классе с установленным лицензионным ПО, проектор в лекционной аудитории

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду.

Программа составлена в соответствии с требованиями ОС ННГУ по направлению подготовки/специальности 09.03.02 - Информационные системы и технологии.

Автор(ы): Васин Александр Сергеевич, кандидат физико-математических наук, доцент.

Заведующий кафедрой: Морозов Олег Александрович, доктор физико-математических наук.

Программа одобрена на заседании методической комиссии от 20.01.2022, протокол № б/н.