МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования_
«Национальный исследовательский
Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДЕНО решением ученого совета ННГУ протокол от «02» декабря 2024 г. № 10

Рабочая программа дисциплины «Рассеяние волн и дифракция флуктуирующего излучения»

Уровень высшего образования **Подготовка кадров высшей квалификации**

Научная специальность

1.3.7. Акустика

Программа подготовки научных и научно-педагогических кадров в аспирантуре **Акустика**

Форма обучения Очная

Нижний Новгород 2025 год

1. Место и цель дисциплины в структуре ПА

Дисциплина «Рассеяние волн и дифракция флуктуирующего излучения» относится к числу факультативных дисциплин образовательного компонента программы аспирантуры и изучается на 3-ом году обучения в 6 семестре.

Цель дисциплины – сформировать у обучающихся представление о современных методах решения задач однократного и многократного рассеяния волн в хаотически неоднородных средах и об основных статистических свойствах случайных волновых полей.

2. Планируемые результаты обучения по дисциплине

Выпускник, освоивший программу, должен

Знать: особенности расчета статистических характеристик волн в хаотических средах (борновское приближение, многократное малоугловое рассеяние в приближении геометрической оптики, метод плавных возмущений и параболического уравнения).

Уметь: выводить зависимости флуктуаций параметров волн (фазы, волнового вектора, амплитуды, интенсивности) от условий рассеяния.

Владеть: основными методами приближённого расчёта статистических характеристик волн.

3. Структура и содержание дисциплины

Объем дисциплины (модуля) составляет 2 з.е., всего - 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа), 36 часов составляет самостоятельная работа обучающегося.

Структура дисциплины

Таблица 1

	Струг	турад	исципли				
		В том числе					
		Контактная работа, часов					
Наименование раздела дисциплины	Всего, часов	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Консультации	Всего	Самостояте льная работа обучающег ося, часов
І. Введение							
1. Цели и задачи курса	2	1	-	-	-	1	1
2. Математическое введение	8	4	-	-	-	4	4
3. Однократное рассеяние	10	5	-	-	-	5	5
электромагнитных волн							
4. Исследование многократного	16	8	-	-	-	8	8
малоуглового рассеяния в							
приближении геометрической оптики							
5. Дифракционная теория	14	7	-	-	-	7	7
многократного малоуглового рассеяния							
6. Теория сильных флуктуаций	10	5	-	-	-	5	5
амплитуды волны в среде с плавными							
неоднородностями							
7. Дифракция флуктуирующего	12	6	-	-	-	6	6
излучения							
Промежуточная аттестация: -зачет							

Итого 72 36 - - 36 36

Таблица 2

Содержание дисциплины

	Содержание дисциплины Форма Форма				
N₂	Наименование раздела	Содержание раздела	проведения	текущего	
п/п	дисциплины	c syckement knowen	занятия	контроля*	
1	Цели и задачи курса	Предмет и структура курса.	Лекция	-	
		Примеры хаотически			
		неоднородных сред и			
		флуктуационных волновых			
		процессов. Связь с курсами			
		статистической радиофизики			
		и теории волновых процессов.			
2	Математическое введение	Случайные процессы.	Лекция	-	
		Функция распределения.			
		Корреляционная теория.			
		Статистически стационарные			
		процессы и процессы со			
		стационарными			
		приращениями. Спектральные			
		разложения. Статистически			
		однородные и изотропные			
		случайные поля. Трехмерные			
		и двумерные спектры.			
		Пространственно-временные			
		случайные поля и их			
		спектральные разложения.			
3	Однократное рассеяние	Метод возмущений	Лекция	-	
	электромагнитных волн	(борновское приближение).			
		Однократно рассеянное на			
		ограниченном объеме			
		случайно неоднородной			
		среды поле в волновой зоне.			
		Средняя интенсивность			
		рассеяния в зоне			
		Фраунгофера по отношению к			
		отдельным неоднородностям			
		среды. Поперечник рассеяния. Частотный спектр			
		<u> </u>			
		рассеянного поля. Особенности рассеяния для			
		различных моделей			
		турбулентных сред. Ряд по кратности рассеяния. Условия			
		применимости приближения			
		однократного рассеяния.			
4	Исследование	Основные уравнения	Лекция	_	
'	многократного	геометрической оптики.			
	малоуглового рассеяния в	Решение их методом			
	приближении	возмущений при малых			
	геометрической оптики	флуктуациях параметров			
	Tomorphi lockon on man	среды. Корреляционные			
		свойства флуктуаций фазы и			

			ı	T
		угла прихода плоской волны.		
		Флуктуации уровня. Примеры		
		расчета для колмогоровской		
		турбулентности. Угловой		
		спектр мощности волны.		
		Условия применимости		
		метода возмущений для		
		решения уравнений		
		геометрической оптики.		
5	Дифракционная теория	Расчет флуктуаций фазы и	Лекция	-
	многократного	амплитуды плоской волны в		
	малоуглового рассеяния	приближении метода плавных		
		возмущений. Связь с		
		приближением		
		геометрической оптики.		
		Корреляционные свойства		
		фазы и уровня волны в		
		турбулентной среде со		
		степенным спектром		
		неоднородностей.		
6	Теория сильных	Параболическое уравнение и	Лекция	
	флуктуаций амплитуды	условия его применимости		
	волны в среде с плавными	для описания волновых		
	неоднородностями	полей. Решение уравнения		
	_	для среднего поля волны		
		локальным методом Чернова.		
		Обзор других методов расчета		
		при немалых флуктуациях		
		амплитуды.		
7	Дифракция	Дифракция плоской волны на	Лекция	
	флуктуирующего	безграничном хаотическом		
	излучения	экране. Случаи		
	_	мелкомасштабных и		
		крупномасштабных		
		неоднородностей поля за		
		экраном. Фазовый		
		хаотический экран. Слабые и		
		сильные флуктуации фазы		
		поля за экраном.		
		Корреляционные свойства		
		случайной волны, прошедшей		
		через отверстие в экране.		
		Случаи малого и большого		
		отверстия. Теорема Ван-		
		Циттерта-Цернике.		
		Циттерта-Цернике.		

4. Формы организации и контроля самостоятельной работы обучающихся

- 1. Еженедельный контроль посещаемости аудиторных занятий.
- 2. Собеседование с обучающимися во время аудиторных занятий.
- 3. Как оценочный способ контроля самостоятельной работы студентов и одновременно разновидность интерактивного обучения используется форма групповой

консультации по отдельным разделам дисциплины в виде семинаров по современным проблемам радиофизики, проводимым на кафедре факультативно.

5. Фонд оценочных средств для аттестации по дисциплине

5.1. Критерии и процедуры оценивания результатов обучения по дисциплине При выполнении всех работ учитываются следующие основные критерии:

- уровень теоретических знаний (подразумевается не только формальное воспроизведение информации, но и понимание предмета, которое подтверждается правильными ответами на дополнительные, уточняющие вопросы);
- умение использовать теоретические знания при анализе конкретных проблем, ситуаций;
- качество изложения материала, то есть обоснованность, четкость, логичность ответа, а также его полнота (то есть содержательность, не исключающая сжатости);
 - способность устанавливать внутри- и межпредметные связи,
- оригинальность мышления, знакомство с дополнительной литературой и другие факторы.

Описание шкалы оценивания на промежуточной аттестации в форме зачета

Оценка	Уровень подготовленности, характеризуемый оценкой					
Зачтено	владение программным материалом, понимание сущности рассматриваемых процессов и явлений, умение самостоятельно обозначить проблемные ситуации в организации научных исследований, способность критически анализировать и сравнивать существующие подходы и методы к оценке результативности научной деятельности, свободное владение источниками, умение четко и ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					
Не зачтено	непонимание смысла ключевых проблем, недостаточное владение науковедческой терминологией, неумение самостоятельно обозначить проблемные ситуации, неспособность анализировать и сравнивать существующие концепции, подходы и методы, неумение ясно излагать результаты собственной работы, следовать нормам, принятым в научных дискуссиях.					

5.2. Примеры типовых контрольных заданий или иных материалов, необходимых для оценки результатов обучения по дисциплине

- 1. Однократно рассеянное на ограниченном объеме хаотической среды поле.
- 2. Средняя интенсивность рассеяния в зоне Фраунгофера.
- 3. Сечение однократного рассеяния.
- 4. Частотный спектр рассеянного поля.
- 5. Условия применимости приближения однократного рассеяния.
- 6. Дисперсия флуктуаций фазы волны в приближении геометрической оптики.
- 7. Дисперсия флуктуаций единичного вектора волновой нормали.
- 8. Спектральное представление дисперсии угла прихода волны (для степенного спектра турбулентности).
- 9. Структурная функция фазы.
- 10. Корреляционная функция фазы.
- 11. Дисперсия флуктуаций уровня волны.
- 12. Корреляционная функция уровня.

- 13. Угловой (пространственный) спектр мощности волны.
- 14. Условия применимости метода возмущений при решении уравнений геометрической оптики.
- 15. Комплексная фаза волны в первом приближении метода плавных возмущений (МПВ).
- 16. Дисперсия фазы волны в МПВ.
- 17. Дисперсия уровня волны в МПВ.
- 18. Корреляционная функция уровня волны в дифракционной зоне.
- 19. Среднее поле волны при сильных флуктуациях амплитуды.
- 20. Дифракция плоской волны на безграничном хаотическом экране с мелкими неоднородностями.
- 21. Дифракция плоской волны на безграничном хаотическом экране с крупными неоднородностями.
- 22. Модель фазового хаотического экрана.
- 23. Прохождение случайного поля через большое отверстие в непрозрачном экране.

6. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Чернов Л.А. Волны в случайно-неоднородных средах. М. Наука, 1975, 172 стр.
- 2. Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Часть ІІ. М. Наука, 1978, 464 стр.
- 3. Исимару И.А. Распространение и рассеяние волн в случайно-неоднородных средах. М. Мир, 1981, 598 стр.
- 4. Гавриленко В.Г. Современные методы расчета спектральных и энергетических характеристик волн в турбулентных средах. (Учебное пособие), Н. Новгород, 1989, 106 стр.
- 5. Гавриленко В.Г., Джандиери Г.В. Рассеяние и излучение волн в хаотически нестационарных средах. Тбилиси-Батуми, 1999, 196 стр.
 - б) дополнительная литература:
- 1. Татарский В.И. Распространение волн в турбулентной атмосфере. М. Наука, 1967, 548 стр.
- 2. Кляцкин В.И. Стохастические уравнения и волны в случайно-неоднородных средах, 1980.
- 3. Электродинамика плазмы (Под редакцией А. М. Ахиезира). М. Наука, 1974, 720 стр.
- 4. верев В.А. Радиооптика. М. Советское радио, 1975, 304 стр.
- 5. Денисов Н.Г. О дифракции волн на хаотическом экране. Изв. вузов: Радиофизика, т. 4, с. 630, 1961.
- 6. Рыжов Ю.А., Тамойкин В.В. Излучение и распространение элекромагнитных волн хаотически неоднородных средах. Изв. вузов: Радиофизика, т. 13, с. 356, 1970.
- 7. Гавриленко В.Г., Степанов Н.С. Статистические характеристики волн в хаотических средах с пространственно-временными неоднородностями. Изв. вузов: Радиофизика, т. 30, с. 3, 1987.

7. Материально-техническое обеспечение дисциплины

• помещения для проведения занятий: лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для хранения и профилактического обслуживания оборудования и помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду ННГУ;

- материально-техническое обеспечение, необходимое для реализации дисциплины, включая лабораторное оборудование;
 - лицензионное программное обеспечение: Windows, Microsoft Office;
- обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются электронными и (или) печатными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Рабочая программа учебной дисциплины составлена в соответствии с учебным планом, Положением о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Постановление Правительства РФ от 30.11.2021 № 2122), Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре) (Приказ Минобрнауки РФ от 20.10.2021 № 951).

АвторыВ	.Г. Гавриленко	
Рецензент	А.В. Кудрин	
Заведующий кафедро	рй	А.В. Калинин

Программа одобрена на заседании Методической комиссии радиофизического факультета от <20> января 2022 года, протокол № 01/22.