МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

УТВЕРЖДЕНО
решением
Ученого совета ННГУ
протокол от
«»202_ г. №
Рабочая программа дисциплины
Программирование квантовых информационных систем
(наименование дисциплины (модуля))
Уровень высшего образования
магистратура
(бакалавриат / магистратура / специалитет)
Направление подготовки / специальность
03.04.02 Физика
(указывается код и наименование направления подготовки / специальности)
Направленность образовательной программы
магистерская программа "Квантовые и нейроморфные технологии"
(указывается профиль / магистерская программа / специализация)
(The with waying (exercise)
Квалификация (степень)
Форма обучения
очная
(канчове / канчо)
Год начала обучения
2023
(для обучающихся какого года начала обучения разработана Рабочая программа)

1. Место и цели дисциплины в структуре ОПОП

Дисциплина «Программирование квантовых информационных систем» относится к дисциплинам вариативной части основной образовательной программы по направлению подготовки 03.04.02 Физика, является обязательной к освоению.

Цель освоения д**исциплины** «Программирование квантовых информационных систем»:

численные подходы к моделированию на классическом освоить компьютере квантовых операций, простейших квантовых алгоритмов и квантовой томографии. Предполагается освоение базовых процессов программирования Python принципов языка И освоение open-source программного пакета QuTIP https://qutip.org/.

2. Структура и содержание дисциплины

<u>Объем дисциплины</u> «Программирование квантовых информационных систем» составляет 2 зачетные единицы, всего 72 часа, из которых 33 часа составляет контактная работа обучающегося с преподавателем (1 час — мероприятия промежуточной аттестации; 16 часов занятия лекционного типа, 16 часов занятия семинарского типа (практические занятия), в том числе 2 часа — мероприятия текущего контроля успеваемости), 39 часов составляет самостоятельная работа обучающегося (39 часов самостоятельная работа в течение семестра).

<u>Содержание дисциплины</u> «Программирование квантовых информационных систем»

		взаимод	В ТОМ актная рабо ействии с п ечение семес из ні	реподавател стра, часы,		работа а, часы
Наименование и краткое содержание разделов и тем дисциплины	Всего (часы)	Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная работа в течение семестра, часы
1. Математическое определение кубита. Представление квантового состояния кубита на сфере Блоха.	10	2	2	_	4	6
2. Моделирование основных однокубитных квантовых операций. Визуализация эволюции квантового состояния на сфере Блоха.	10	2	2	_	4	6
3. Моделирование реальных физических кубитов, учет состояний вне вычислительного базиса. Понятие утечки. Методы сравнения двух квантовых состояний. Расчет вероятности совпадения (Fidelity) для квантовых операций.	10	2	2	_	4	6
4. Моделирование бездиссипативной динамики многокубитовых состояний. Основные двухкубитные квантовые операции.	10	2	2	_	4	6
5. Расчет эволюции многокубитовых квантовых состояний. Расчет многокубитной функции совпадения (fidelity).	10	2	2	_	4	6
6. Моделирование квантовых алгоритмов Дойча-Йожи и Гровера.	10	2	2	_	4	6
7. Основные методы оценки квантовой запутанности: негативность, энтропия Фон-Неймана, коэффициенты корреляции Шмидта.	10	2	2	_	4	6

8. Моделирование квантовых схем в терминах матриц плотности. Визуализация смешанных квантовых состояний на сфере Блоха. Понятие частичного следа.	10	2	2	_	4	6
9. Моделирование квантовых шумов методом квантовых траекторий (квантовый метод Монте-Карло).	10	2	2	ı	4	6
10. Моделирование многоуровневых квантовых схем с учетом декогерентизации и шумов.	10	2	2	-	4	6
11. Квантовые измерения, моделирование процессов измерений состояний кубитов. Неразрушающие квантовые измерения и измерения в реальном времени (single-shot readout).	12	2	2	_	4	6
В т.ч. текущий контроль	2		2			_
Промежуточная аттестация –	зачет					

3. Образовательные технологии

- 1) Чтение лекций;
- 2) сопровождение лекций написанием и выводом формул, построением графиков, изображением рисунков на доске;
 - 3) методика «вопросы и ответы»;
 - 4) выполнение практического задания у доски;
 - 5) индивидуальная работа над практическим заданием;
 - 6) работа в парах над практическим заданием;
 - 7) работа в малых группах над практическим заданием;
 - 8) методика «мозговой штурм».

4. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся предполагает изучение конспектов лекций, выделенных разделов основной литературы, а также дополнительной литературы, выполнение практических заданий, отвечающих изучаемым разделам дисциплины, подготовку к промежуточной аттестации.

Перечень основной и дополнительной литературы для самостоятельного изучения приведен в п. 7 настоящей Рабочей программы дисциплины.

Контрольные вопросы для промежуточной аттестации, примеры практических заданий приведены в п. 6.3 настоящей Рабочей программы дисциплины.

5. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции	Планируемые результаты обучения по дисциплине
ПК-1	(ПК-1) Знать основные физические
Способен самостоятельно ставить	принципы описания квантовых вычислений.
конкретные задачи научных	(ПК-1) Уметь выполнять квантовые
исследований в области физики и	вычислительные операции.
решать их с помощью современной	(ПК-1) Владеть методами
аппаратуры и информационных	программирования квантовых
технологий с использованием	информационных систем.
новейшего российского и зарубежного	
опыта	
ПК-4	(ПК-4) Знать основные физические
Способен принимать участие в	принципы описания квантовых
разработке новых методов и	вычислительных систем.
методических подходов в инженерно-	(ПК-4) Уметь выполнять операции над
конструкторской, инженерно-	элементами квантовых информационных
технологической, инновационной и	систем.
проектной деятельности	(ПК-4) Владеть методами выполнения
	операций над элементами квантовых
	информационных систем.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине

6.1. Описание шкал оценивания результатов обучения по дисциплине

Промежуточной аттестацией для дисциплины «Программирование квантовых информационных систем» является **зачет**.

По итогам зачета выставляется оценка «Зачтено» или «Не зачтено». Оценка «Не зачтено» означает отсутствие аттестации, оценка «Зачтено» выставляется при успешном прохождении аттестации.

6.2. Процедуры и критерии оценивания результатов обучения по дисциплине

Для оценивания результатов обучения в виде знаний используются следующие процедуры и технологии:

• индивидуальное собеседование (промежуточная аттестация). Контрольные вопросы для индивидуального собеседования представлены в п. 6.3 настоящей Рабочей программы дисциплины.

Для оценивания результатов обучения в виде умений и навыков используются следующие процедуры и технологии:

• выполнение практических заданий (текущий контроль, промежуточная аттестация).

Примеры практических заданий для проведения текущего контроля и промежуточной аттестации представлены в п. 6.3 настоящей Рабочей программы дисциплины.

Критериями оценивания являются полнота знаний, наличие умений и владений (навыков), перечисленных в п. 5 настоящей Рабочей программы дисциплины.

- «**Не зачтено**» обучающийся не продемонстрировал представления об основных теоретических разделах курса, не показал минимально допустимый уровень умений и навыков выполнения практических заданий;
- «Зачтено» обучающийся продемонстрировал изложение формулировок основных теоретических положений курса и успешно показал умения и навыки выполнения практических заданий базового уровня сложности.
- 6.3. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения
 - 6.3.1. При проведении промежуточной аттестации обучающимся предлагаются следующие контрольные вопросы, охватывающие программу дисциплины «Программирование квантовых информационных систем»:
 - 1. Кодирование квантовой информации. Кубит, сфера Блоха.
 - 2. Однокубитные операции. Достоверность операций.
 - 3. Двухкубитные операции. Достоверность операций.
 - 4. Языки квантового программирования.
 - 5. Алгоритм Шора.
 - 6. Алгоритм Гровера.
 - 7. Критерии ДиВинченцо.
 - 8. Алгоритмы Дойча-Йожи и Гровера.
 - 9. Метод квантовых траекторий.
 - 10. Измерения квантовых состояний.
 - 6.3.2. Примеры практических заданий для практических занятий, самостоятельной работы обучающихся:
 - 1. Моделирование динамики одного кубита под действием переменного внешнего поля и в термостате.

- 2. Моделирование динамики двух связанных кубитов под действием внешнего поля и в термостате.
- 3. Моделирование динамики многоуровневой квантовой системы.
- 4. Решение задачи рассеяния в квантовой механике. S-матрица.
- 5. Численное решение двумерного уравнения Шредингера.

6.4. Методические материалы, определяющие процедуры оценивания

- 1. Положение «О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в ННГУ», утвержденное приказом ректора ННГУ от 13.02.2014 №55-ОД.
- 2. Положение о фонде оценочных средств, утвержденное приказом ректора ННГУ от 10.06.2015 №247-ОД.

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
 - 1. Блохинцев Д.И., «Основы квантовой механики». М.: Hayka, 1983 http://www.lib.unn.ru/php/details.php?DocId=70099&DB=1
 - 2. Галицкий В.М., Карнаков Б.М. и Коган В.И. «Задачи по квантовой механике». Москва: Hayka, 1992. http://www.lib.unn.ru/php/details.php?DocId=70108&DB=1
 - 3. Самарский А.А., Гулин А В. Численные методы: [учеб. пособие для вузов по специальности "Приклад. математика"]. М.: Наука, 1989. 429 с. Фонд Фундаментальной библиотеки ННГУ: 4 экз. http://www.lib.unn.ru/php/details.php?DocId=62124
 - 4. Самарский А.А. Введение в численные методы. М.: Наука, 1982. 272 с. Фонд Фундаментальной библиотеки ННГУ: 4 экз. http://www.lib.unn.ru/php/details.php?DocId=62123

б) дополнительная литература:

- 1. Демиховский В.Я., Вугальтер Г.А., «Физика квантовых низкоразмерных структур». М: Логос, 2000 http://www.lib.unn.ru/php/details.php?DocId=38775&DB=1
- 2. Солимар Л. «Туннельный эффект в сверхпроводниках и его применение». Москва: Мир, 1974. http://www.lib.unn.ru/php/details.php?DocId=76585&DB=1
- 3. Фрёман Н. и Фрёман П.О. «ВКБ-приближение». Mockba: Mup, 1967. http://www.lib.unn.ru/php/details.php?DocId=71560&DB=1
- 4. Лесовик Г.Б. и Садовский И.А. «Описание квантового электронного транспорта с помощью матриц рассеяния». Успехи физических наук, т. 181, стр. 1041—1096 (2011). https://ufn.ru/ru/articles/2011/10/b/сободный доступ
- 5. Калиткин Н.Н., Альшин А.Б., Альшина Е.А., Рогов Б.В. Вычисления на квазиравномерных сетках. М.: Физматлит, 2005. 224 с. Фонд

Фундаментальной библиотеки ННГУ: 2 экз. http://www.lib.unn.ru/php/details.php?DocId=240066.

- в) программное обеспечение и Интернет-ресурсы:
 - 1) пакеты символьной математики Wolfram Mathematica и MathWorks MATLAB;
 - 2) Интернет-ресурсы Фундаментальной библиотеки ННГУ http://www.lib.unn.ru/.

8. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение дисциплины обусловлено наличием учебных аудиторий для проведения занятий, оборудованных специализированной мебелью, меловыми или магнитно-маркерными досками для представления учебной информации большой аудитории. Ресурс мела и маркеров для доски в учебных аудиториях регулярно возобновляется.

Для практических занятий, связанных с работами на персональных компьютерах, используются терминал-классы, оборудованные в соответствии с требованиями охраны труда.

ННГУ обеспечен всем необходимым программным обеспечением для проведения практических занятий, связанных с работами на персональных компьютерах.

Помещения для самостоятельной работы обучающихся (на базе Фундаментальной библиотеки ННГУ) оснащены компьютерной техникой с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ННГУ.

Программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 03.04.02 Физика.
Автор(ы):
к. фм. н / Бастракова М.В. /
Рецензент(ы):
Зав. кафедрой теоретической физики физического факультета,
д. фм. н., доцент
Программа одобрена на заседании Учебно-методической комиссии физического факультета ННГУ от «» 202_ года, протокол N_0 б/н.
Председатель Учебно-методической комиссии физического факультета ННГУ/ Перов А.А. /