МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования_ «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

УТВЕРЖДЕНО решением ученого совета ННГУ протокол от «31» мая 2023 г. № 6

Рабочая программа дисциплины

«Квантовая и оптическая электроника»

Уровень высшего образования **бакалавриат**

Направление подготовки **02.03.02 «Фундаментальная информатика и информационные технологии»**

Информационные системы и технологии

(указывается профиль / магистерская программа / специализация)

Квалификация **бакалавр**

Форма обучения **очная**

Нижний Новгород

2023

1. Место и цели дисциплины (модуля) в структуре ОПОП

Дисциплина «Квантовая и оптическая электроника» относится к обязательным дисциплинам вариативной части профессионального цикла основной образовательной программы по направлению 02.03.02 «Фундаментальная информатика и информационные технологии», преподается в 7 семестре.

Целями освоения дисциплины является: формирование у студента современного представления о фотонной структуре электромагнитного поля, об элементарных квантовых актах однофотонного и многофотонного взаимодействия поля с веществом и их конкретном проявлении при преобразовании, усилении и генерации когерентного электромагнитного излучения в квантовых генераторах оптического диапазонов длин волн и других устройствах современной оптоэлектроники.

Законы, модели и уравнения, рассмотренные в лекционном курсе, дополняются изучением современных лазерных генераторов в рамках практических занятий и общефизического лабораторного практикума.

2. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (Код компетенции, этап формирования)	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций			
ПК-1 Способность	<u>Знать</u> методики сбора, обработки и			
собирать, обрабатывать и	интерпретации данных современных научных			
интерпретировать данные	исследований в области квантовой электроники и			
современных научных	оптоэлектроники, необходимых для формирования			
исследований, необходимые для	научных выводов			
формирования подходов, решений	<u>Уметь</u> и обладать навыками сбора, обработки и			
и выводов по соответствующим	интерпретации данных современных научных			
научным и профессиональ-ным	исследований в области квантовой электроники и			
проблемам	оптоэлектроники и использования их для			
Этап формирования базовый	формирования научных выводов в профессиональной деятельности			
	<u>Владеть</u> опытом сбора, обработки и			
	интерпретации данных в области квантовой и			
	оптической электроники, необходимых для			
	формирования выводов по соответствующим			
	направлениям научных исследований			

3. Структура и содержание дисциплины «Квантовая и оптическая электроника»

Объем дисциплины составляет 3 зачетных единицы, всего 108 часов, из которых 65 часа составляет контактная работа обучающегося с преподавателем (32 часа занятия лекционного типа, 16 часов практические занятия, 16 часов – лабораторный практикум, 1 час – мероприятия промежуточного контроля), 43 часов составляет самостоятельная работа обучающегося.

Содержание дисциплины (модуля)

(структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий)

			В то	м числе		
	Всего (часы)	Контактная работа (работа во взаимодействии с преподавателем), часы				н работа часы
Формируемые компетенции (Код компетенции, этап формирования)		Занятия лекционного типа	Занятия семинарского типа	Занятия лабораторного типа	Всего	Самостоятельная работа обучающегося, часы
1. Введение	4	2			2	2
2. Квантовая теория излучения и поглощения	13	4	4		8	5
3. Элементы квантовой кинетики и теории спектральных линий	11	4	2		6	5
4. Взаимодействие двухуровневой среды с резонансным электромагнитным полем	13	4	2	2	8	5
5. Квантовые усилители и генераторы, информационные системы на их основе	30	8	4	8	20	10
6. Методы управления лазерным излучением	16	4	2	4	10	6
7. Методы регистрации оптических сигналов	19	2	2	2	6	4
8. Современная элементная база оптоэлектроники	10	4			4	6
В т.ч. текущий контроль	1	1			1	
Промежуточная аттестация – зачет					'	

4. Образовательные технологии

В процессе изучения дисциплины используются следующие образовательные технологии: проблемный метод изложения материала и диалогичная форма проведения практических занятий. Лабораторный практикум предусматривают демонстрацию физических опытов, а также изучение лазерных и оптоэлектронных моделей с привлечением инструментальной приборной базы и информационных технологий.

5. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа обучающихся включает следующие виды:

- разбор лекционного материала,
- изучение дополнительных разделов дисциплины с использованием учебной литературы,
- выполнение домашних заданий по решению задач
- подготовка отчета по результатам выполнения лабораторной работы в лаборатории спецпрактикума

Текущий контроль усвоения материала проводится путем проведения тестовых контрольных заданий во время практических занятий и проверки выполнения домашних заданий.

Примеры тестовых контрольных заданий:

- 1. Сформулировать правила отбора для гармонического осциллятора.
- 2. Почему происходит уширение спектральных линий поглощения (излучения) вещества в сильных полях.
- 3. Почему в оптическом диапазоне длин волн для измерения ширины линии можно использовать явление флуоресценции, а в радиодиапазоне только вынужденное излучение или поглощение среды.
- 4. Обосновать применимость теории возмущения в атоме водорода при возбуждении его электрическим полем на частоте (λ =121 нм) с плотностью мощности 10 Bt/cм²
- 5. Известно, что время жизни электрона в возбужденном состоянии т. Получить выражение для спектральной формы линии.
- 6. Считая одно зеркало в резонаторе Фабри-Перо "глухим" (R_1 = 1), а другое полупрозрачным (R_2 = R), качественно изобразите зависимость мощности лазера от R. Существует ли оптимальная величина R ?
- 7. Отношение населенностей двух уровней для вещества, находящегося в состоянии равновесия при температуре 300°K, равно 10. Вычислить частоту излучения, соответствующую переходу между этими уровнями.
- 8. Типичное время жизни для разрешённого электродипольного перехода в видимом диапазоне ~10 нс. Оценить естественную ширину линии рентгеновского лазера, излучающего в диапазоне 10 нм.

Примерный список домашних заданий:

- 1. Для идеальной квантовой ямы (потенциальный двусторонний барьер с бесконечными стенками) указать незапрещенные в электродипольном взаимодействии переходы. Вычислить матричные элемент оператора электродипольного взаимодействия для перехода с 1 на 2 энергетические уровни.
- 2. Получить выражение коэффициента Эйнштейна для стимулированного излучения через матричный элемент оператора взаимодействия. Получить связь коэффициентов Эйнштейна для стимулированного и спонтанного излучения.
- 3. Для электрона в атоме водорода, находящегося в 3р возбуждённом состоянии указать переход при электродипольном взаимодействии с максимальным значением частоты. Найти матричный элемент оператора взаимодействия для этого перехода.
- 4. Вычислить частоту Раби осцилляций при точном резонансе для перехода с 1 на 2 энергетические уровни идеальной квантовой ямы. Ширина ямы 10 нм, плотность мощности поля $10~{\rm Bt/cm^2}$
- 5. Для двухуровневой системы получить зависимость от времени вероятности нахождения электрона на уровнях от времени под действием внешнего переменного электрического поля на частоте $\omega = \omega_{12} + \delta \omega$, где ω_{12} частота перехода, $\delta \omega$ отстройка.
- 6. Рассчитать ширину линии для 2p-1s перехода в атоме водорода.

- 7. Для выбранного механизма получить выражение для неоднородно уширенного контура линии. Для выбранных условий оценить её ширину.
- 8. Найти ширину линии спонтанного излучения квантового гармонического осциллятора при переходе E1-E0. Наблюдаема ли такая ситуация в эксперименте.
- 9. Что является доминирующим механизмом уширения линии в поглощающей ячейке SF_6 , облучаемого CO_2 -лазером (λ = 10,6 мкм, U=50Bт), если каустика лазерного пучка в фокусе имеет диаметр 0,5 мм, T=300°K, p = 100 тор, $\sigma_{\text{погл}}$ = $5\cdot10^{-14}$ см²
- 11. Определить линейный коэффициент усиления слабого сигнала в 2-х уровневой среде. Если концентрация инверсии $N_{\circ} = 10^9 \text{ см}^{-3}$, вероятность спонтанного излучения 10^7 сек^{-1} . Линия имеет форму Лоренца с шириной, определяемой спонтанным излучением.
- 12. Для 2-х уровневой среды без диссипации ($T_1 = T_2 = \infty$) найдите выражение для поляризации при наложении на среду резонансного внешнего поля $E = E_0 \cdot \cos(w_{21}t)$.
- 13. Для двухуровневого парамагнетика со спином 1/2 найти матричный элемент перехода и доказать, что его вероятность равна 0 при $H_{\sim} \parallel H_0$.
- 14. На 2-х уровневый атомный газ воздействует поле $E(t) = E_0 \cdot \cos(w_{21}t)$, w_{21} боровская частота атомного перехода. Для стационарного режима рассчитайте мощность спонтанного излучения (соударениями в газе пренебречь).
- 15. Для соседних продольных мод резонатора Фабри-Перо длиной 1м, заполненного активной средой с шириной лоренцовой линии излучения на рабочем переходе $\Delta w = 2 \cdot 10^{12}$ рад/сек (рубин), сделайте оценку относительной разницы коэффициентов (показателей) усиления.
- 16. Оценить минимальную мощность лампы-накачки (к.п.д. = 100 %), необходимую для создания инверсии в твердотельном лазере с концентрацией активных частиц $n=10^{19}$ см⁻³, объемом кристалла V=10 см³. Частота середины полосы оптической накачки равна $v=6\cdot10^{14}$ Γ ц, время жизни частиц на верхнем рабочем уровне $t_{cn}=3\cdot10^{-3}$ сек.
- 17. Возбужденный уровень молекулы E_i связан с тремя нижними уровнями E_n радиационными переходами с вероятностями $A_{i3} = 5 \cdot 10^7 \, \text{c}^{-1}$, $A_{i2} = 3 \cdot 10^7 \, \text{c}^{-1}$ и $A_{i1} = 2 \cdot 10^7 \, \text{c}^{-1}$. Вычислить время жизни по отношению к спонтанному распаду для E_i и относительные населенности N_n/N_i для случая непрерывного возбуждения уровня E_i при условии, что $\tau_1 = 10^{-8} \, \text{c}$, $\tau_2 = 5 \cdot 10^{-7} \, \text{c}$, $\tau_3 = 5 \cdot 10^{-9} \, \text{c}$. Какая требуется накачка из основного состояния E_0 , чтобы обеспечить инверсию населенностей на уровнях E_i и E_1 ?
- 18. Линия люминесценции иона Nd^{3+} в стекле для рабочего перехода Nd лазера имеет полуширину ~30 нм. Найти ширину верхнего лазерного уровня, если нижний дезактивируется со скоростью 10^8 с⁻¹.
- 19. Оценить квантовый и электронный КПД Не-Ne лазера, если известно, что электронная температура в разрядной трубке ~5 эВ.
- 20. Используя классическое определение добротности резонатора (контура) $Q_s:|dW/dt|$ (мощность потерь) = $\omega_s/Q_s \cdot W$ (запасенная в резонаторе энергия) и концепцию плоских волн в резонаторе Фабри-Перо с коэффициентом отражения по мощности R_1 и R_2 , покажите, что добротность Q_s такого резонатора равна $Q_s = -2L \cdot w_s /(c \cdot lnR_1R_2)$, где L-длина резонатора.
- 21. Рассчитать добротность Q_p и время жизни фотона τ_{ϕ} в резонаторе Фабри-Перо с плоскими зеркалами. Расстояние между зеркалами L=1 м, коэффициенты отражения зеркал $R_1=R_2=0.95$, рабочая длина волны $\lambda=0.6$ мкм. Коэффициент поглощения среды, заполняющей резонатор, $\alpha=0.01$ см⁻¹. Дифракционными потерями пренебречь.
- 22. Газовый лазер работает на однородно-уширенном переходе, ширина линии 200 МГц. Вероятность спонтанного излучения на рабочем переходе ($\lambda=1$ мкм) $A_{cn}=10^7$ с⁻¹ .

- Параметры резонатора Фабри-Перо: длина $L=1\,\mathrm{m}$, полные потери 0,02. Определить пороговую концентрацию инверсии.
- 23. Рассчитать необходимую пороговую инверсию перехода газового лазера (λ =510 нм), если вероятность перехода $A_{ik}=5\cdot10^7$ с⁻¹. Однородная ширина линии $\Delta \nu^{\text{одн}}=20$ МГц, длина резонатора L=20 см, а потери в резонаторе при двойном проходе составляют 5%.
- 24. Лазерная среда имеет доплеровский профиль усиления с шириной $\Delta v = 2$ ГГц. Однородная ширина равна $\Delta v^{\text{одн}} = 50$ МГц, а вероятность перехода $A_{ik} = 10^8 \text{c}^{\text{-1}}$. Пусть частота одной из мод резонатора (L = 30 см) совпадает с центральной частотой профиля усиления. Какова пороговая инверсия для центральной моды и при какой инверсии генерация начнется на соседних модах, если потери в резонаторе составляют 10%?
- 25. Частота моды пассивного плоскопараллельного Фабри-Перо резонатора (L = 15 см) сдвинута на $0.5 \cdot \Delta v_{Doppl}$ от центра гауссовской линии усиления газового лазера с λ =633 нм. Оценить затягивание моды, если ширина резонанса резонатора Δv_p = 20 МГц, а Δv_{Doppl} = 1 ГГц.
- 26. Для соседних продольных мод резонатора Фабри-Перо длиной 1м, заполненного активной средой с шириной лоренцовой линии излучения на рабочем переходе $\Delta\omega=2\cdot 10^{12}\,$ рад/сек (рубин), сделайте оценку относительной разницы коэффициентов (показателей) усиления.
- 27. Резонатор инжекционного полупроводникового лазера образован естественными гранями кристалла с коэффициентами отражения R_1 = R_2 =0,37. Определите пороговый уровень усиления для резонаторов длиной L = 400 мкм и L = 100 мкм, если внутренние потери составляют $\alpha_{\text{внут}}$ = 5 см⁻¹. Что произойдет, если на грани резонатора нанести отражающие покрытия с R_1 =0,98 и R_2 =1?
- 28. Мощность непрерывной генерации полоскового полупроводникового лазера равна 10 мВт, длина волны излучения $\lambda = 0.8$ мкм, ширина спектральной линии $\Delta v = 100$ МГц, размеры ближнего поля 1мкм × 10 мкм. До какой температуры надо нагреть абсолютно черное тело, чтобы его спектральная яркость в заданном диапазоне достигла яркости на зеркале лазера?
- 29. Определить оптимальный коэффициент пропускания зеркал резонатора лазера, позволяющий получить максимальную выходную мощность. Длина резонатора L=10 см, коэффициент ненасыщенного усиления на проход $g_o=0.1$ см⁻¹, коэффициент потерь на проход $\alpha=0.01$ см⁻¹. Дифракционными потерями пренебречь.

6. Фонд оценочных средств для промежуточной аттестации по дисциплине включающий:

- 6.1. Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования
- ПК-1. Способность собирать, обрабатывать и интерпретировать данные современных научных исследований, необходимые для формирования подходов, решений и выводов по соответствующим научным и профессиональ-ным проблемам

	Критерии оценивания (дескрипторы)						
· · · · •		«неуловлеть	_ •		i		«превосхолно
компетенции	(11/101x0)>>			«хорошо»		«отлично»	-
Индикаторы компетенции Знать методики сбора, обработки и интерпретации данных современных научных исследований в области квантовой электроники и оптоэлектроники, необходимых для формирования научных выводов Уметь и обладать навыками сбора, обработки и интерпретации данных современных научных исследований в области квантовой электроники и оптоэлектроники и использования их для формирования научных выводов в профессиональной деятельности	(11/101x0)>>	орительно»	удовлетвори тельно» Знание основного материала с рядом негрубых ошибок Умение сбора, обработки и интерпретаци и данных современных научных исследований в области квантовой электроники и оптоэлектрон ики с рядом		«очень хорошо» Знание основного материала с незначительн ыми погрешностя ми Умение сбора, обработки и интерпретац ии данных современных научных исследовани й в области квантовой электроники и оптоэлектрон	«отлично» Знание основного материала без ошибок и погрешност ей Умение и обладание навыками сбора, обработки и интерпретац ии данных современны х научных исследовани й в области квантовой электроники и	ж Знание основного и дополнитель ного материала без ошибок и погрешносте й Умение и обладание навыками сбора, обработки и интерпретац ии данных современных научных исследовани й в области квантовой электроники и иптоэлектро ники и использован ия их для формировани я научных выводов в профессиона
Владеть опытом сбора, обработки и интерпретации данных в области квантовой и оптической электроники, необходимых для формирования выводов по соответствующим направлениям научных исследований	Полное отсутстви е опыта сбора, обработки и интерпрет ации данных в области квантовой и оптическо й	Фрагментар ные навыки владения опытом сбора, обработки и интерпрета ции данных в области квантовой и оптической электроник и	Наличие минимальны х навыков владения опытом сбора, обработки и интерпретаци и данных в области квантовой и оптической электроники и их использовани я в профессиона льной деятельности	Посредстве нное владение навыками сбора, обработки и интерпрета ции данных в области квантовой и оптической электроник и и их использован ия в профессион альной деятельност и	ии данных в области квантовой и оптической электроники и их использовани	Хорошее владение навыками сбора, обработки и интерпретац ии данных в области квантовой и оптической электроники и их использован ия в профессион альной деятельност и	льной деятельности Всесторонне е владение навыками сбора, обработки и интерпретац ии данных в области квантовой и оптической электроники и их использован ия в профессиона льной деятельности
Шкала оценок по проценту правильно выполненных контрольных заданий	0 – 20 %	21 – 50 %	51 – 70%	71-80%	81 – 90%	91 – 99%	100%

6.2. Описание шкал оценивания

Итоговый контроль качества усвоения студентами содержания дисциплины проводится в виде зачета, на котором определяется:

- уровень усвоения студентами основного учебного материала по дисциплине;
- уровень понимания студентами изученного материала;
- способность студентов использовать полученные знания для решения конкретных задач.

Зачет проводится в устной форме и заключается в ответе студентом на теоретические вопросы курса (с предварительной подготовкой), решении задачи (с предварительной подготовкой) и последующем собеседовании в рамках тематики курса. Собеседование проводится в форме вопросов, на которые студент должен дать краткий ответ.

Результатом проверки усвоения студентом материала и правильности решения задачи является выставление студенту оценки «зачтено». При отсутствии соответствующего уровня знаний и навыков студент не аттестовывается с выставлением оценки «не зачтено»

6.3. Критерии и процедуры оценивания результатов обучения по дисциплине (модулю), характеризующих этапы формирования компетенций

Для оценивания результатов обучения в виде <u>знаний</u> используются: индивидуальное собеседование, домашние задания, тестовые контрольные вопросы.

Для оценивания результатов обучения в виде <u>умений</u> используются: индивидуальное собеседование, практические контрольные задания и результаты выполнения студентом лабораторного практикума по данной дисциплине.

Для оценивания результатов обучения в виде <u>владений</u> используются: индивидуальное собеседование, комплексные практические задания.

6.4. Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Контрольные вопросы для промежуточной аттестации по итогам освоения дисциплины

- 1. Сформулировать правила отбора для гармонического осциллятора.
- 2. Обосновать применимость теории возмущения в атоме водорода при возбуждении его электрическим полем на частоте (λ =121 нм) с плотностью мощности $10~{\rm Bt/cm^2}$
- 3. Почему происходит уширение спектральных линий поглощения (излучения) вещества в сильных полях?
- 4. Почему в оптическом диапазоне длин волн для измерения ширины линии можно использовать явление флуоресценции, а в радиодиапазоне только вынужденное излучение или поглощение среды?
- 5. Для выбранного механизма получить выражение для неоднородно уширенного контура линии. Для выбранных условий оценить её ширину.
- 6. Известно, что время жизни электрона в возбужденном состоянии т. Получить выражение для спектральной формы линии.
- 7. Отношение населенностей двух уровней для вещества, находящегося в состоянии равновесия при температуре 300°K, равно 10. Вычислить частоту излучения, соответствующую переходу между этими уровнями.
- 8. Типичное время жизни для разрешённого электродипольного перехода в видимом диапазоне ~10 нс. Оценить естественную ширину линии рентгеновского лазера, излучающего в диапазоне 10 нм.

- 9. Механизмы однородного уширения. Вывести выражение для однородно уширенного контура линии. Дать оценку её ширины (в см⁻¹) для одного из радиационных переходов Ne.
- 10. Механизмы неоднородного уширения. Для выбранного механизма получить выражение для неоднородно уширенного контура линии. Для выбранных условий оценить её ширину (в см⁻¹).
- 11. Доплеровская ширина линии 500 М Γ ц. Оценка времени жизни уровня 10^{-8} с. Предложить метод измерения ширины лоренцевского контура.
- 12. Обосновать принципиальные трудности создания УФ и рентгеновских активных сред.
- 13. Связь коэффициента ненасыщенного усиления с коэффициентами Эйнштейна. Сравнить зависимости коэффициента усиления от мощности накачки в случае однородного и неоднородного насыщения усиления.
- 14. Двух-, трёх- и четырёхуровневая схемы лазеров: возможности реализации, достоинства и недостатки. Оптимальная ширина уровней.
- 15. Nd:АИГ лазер: квантовая схема, преимущество матрицы, организация эффективной накачки.
- 16. Традиционное устройство Nd лазера известно. Почему бы не сделать лазер того же диапазона на пара́х неодима? На газообразном соединении Nd, например, с галогеном?
- 17. Почему в лазерах, работающих на молекулярных переходах, используют полированные металлические зеркала, а в лазерах, работающих на электронных переходах, диэлектрические?
- 18. Показать, что абсолютная ширина линии открытого оптического резонатора с плоскими зеркалами не зависит от частоты. Оценить (в см $^{-1}$) интервал между продольными модами и ширину линии такого резонатора для R=0,99 и L=1 м.
- 19. Изобразить структуру мод (линии уровня интенсивности, поляризацию, профиль напряжённости поля) TEM_{00} и TEM_{11} открытого резонатора с круглыми зеркалами. Для какой из них следует ожидать бо́льших дифракционных потерь?
- 20. Изобразить и обосновать спектральный контур насыщенного усиления в резонаторе газового лазера при возбуждении в нём одной моды с частотой, лежащей в стороне от центра линии вещества.
- 21. Оценить число продольных мод, генерируемых He-Ne лазером длиной ~1 м, считая, что температура разряда не слишком отличается от комнатной. Зависит ли ширина провала в насыщенном контуре усиления и ширина линии излучения лазера от длины резонатора?
- 22. Найти значение ненасыщенного коэффициента усиления для полупроводникового лазера с длиной активной области 100 мкм при использовании сколов по кристаллическим поверхностям в качестве зеркал.
- 23. Оценить ширину Лэмбовского провала для He-Ne лазера и сравнить полученное значение с доплеровской шириной линии.
- 24. Объяснить принцип действия и преимущества ДГС с раздельным ограничением. Типичные оптические параметры ДГС. Изобразить зонную диаграмму, привести вариант используемых материалов.
- 25. Обосновать необходимость многокомпонентных материалов для приготовления диодных структур. Преимущества и недостатки соединения AlGaAs как материала для лазерных диодов. Привести пример материалов для диодной структуры на «телекоммуникационный» диапазон ~ 1,3 мкм
- 26. Особенности гетероструктуры на основе InGaAsP/InP. Вид ватт-амперной характеристики, спектр лазера и светодиода на её основе.
- 27. Чем определяется ширина полосы лазерного диода как источника информации? Почему светодиоды уступают им по этому параметру? Указать оценки для обоих случаев.

- 28. Как и почему зависит от температуры рабочая частота лазерного диода? Почему с ростом температуры снижается эффективность генерации?
- 29. Чем определяется толщина активной области лазерного диода, выполненного на основе простейшей гомоструктуры?
- 30. Указать и обосновать преимущества лазерных диодов с распределённой обратной связью и распределённым брэгговским отражением по сравнению с диодами простейшей геометрии.
- 31. Сравнить эффективность управления сигналами от лазерного диода путём модуляции накачки, модуляции добротности и модуляции выходного пучка.
- 32. Оценить ширину линии излучения и интервал между продольными модами для типичного лазерного диода

Для оценки сформированности компетенции ПК-1 используются также контрольные задания, примеры которых приведены в пункте 5.

7. Учебно-методическое и информационное обеспечение дисциплины «Квантовая и оптическая электроника»

а) основная литература:

- 1. Страховский Г.Н., Успенский А.В. *Основы квантовой электроники* М.: «Высшая школа», 1979, 336с.
 - 2. Карлов Н.В. Лекции по квантовой электронике М.: «Наука», 1983, 320с.(4)
 - 3. Ярив А. Квантовая электроника М.: «Сов.радио»,1980, 460с. (24)

б) дополнительная литература:

- 1. Я.И.Ханин «Лекции по квантовой радиофизике» Н.Н., ИПФ РАН, 2005г.(1)
- 2. Ю.М.Сорокин , В.С.Ширяев «Оптические потери в световодах» Н.Н., ННГУ, 2000г. 186с.(1)
- 3. Пантелл Р., Путхофф Г. Основы квантовой электроники М. «Мир», 1972г 254с. (4)
- 4. Электронная физико-математическая библиотека EqWorl dhttp://eqworld.ipmnet.ru/ru/library/physics/quantum.htm)
- 5. Клышко Д.Н. Фотоны и нелинейная оптика. М.: Наука, 1980 Электронная физикоматематическая библиотекаEqWorld http://eqworld.ipmnet.ru/ru/library/physics/optics.htm

8. Материально-техническое обеспечение дисциплины (модуля)

Для обучения дисциплине имеются специальные помещения для проведения занятий лекционного типа, практических занятий, текущего контроля и промежуточной аттестации, а также учебно-исследовательская лаборатория спецпрактикума «Оптические квантовые генераторы на твердом теле». Учебные аудитории укомплектованы специализированной мебелью и техническими средствами обучения, а лаборатория спецпрактикума дополнительно оснащена современным оптико-электронным оборудованием и вычислительными средствами на базе комплекса ЭВМ.

Программа составлена в соответствии с требованиями ОС ННГУ с учетом рекомендаций и ОПОП ВПО по направлению 02.03.02 «Фундаментальная информатика и информационные технологии»

Автор	доцент Маругин А.В.
Рецензент	доцент Пархачев В.В.
Заведующий кафедрой	профессор Бельков С.А.

Программа одобрена на заседании методической комиссии радиофизического факультета от <u>25 мая 2023</u> № <u>04/23</u>.